Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl State Technical University
Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Kazan, Kazan, Russian Federation
UDK 547.534.1 Этилбензол
Issledovany osnovnye zakonomernosti processa aerobnogo zhidkofaznogo okisleniya etilbenzola do gidroperoksida. Ustanovleno, chto primenenie ftalimidnyh katalizatorov (N gidroksiftalimid i ego proizvodnye) pozvolyaet povysit' skorost' okisleniya dannogo uglevodoroda v 1,5-2 raza po sravneniyu s iniciatorami razlichnoy prirody. Pri etom sohranyaetsya vysokaya selektivnost' obrazovaniya celevogo gidroperoksida – okolo 90%. Na osnovanii eksperimental'nyh dannyh rekomendovany usloviya osuschestvleniya reakcii okisleniya etilbenzola v prisutstvii ftalimidnyh katalizatorov. Poluchennye rezul'taty mogut byt' ispol'zovany dlya usovershenstvovaniya tehnologii sovmestnogo proizvodstva oksida propilena i stirola – cennyh produktov osnovnogo organicheskogo i neftehimicheskogo sinteza.
etilbenzol, zhidkofaznoe aerobnoe okislenie, gidroperoksid etilbenzola, N-gidroksiftalimid, ftalimidnye katalizatory, oksid propilena, stirol
1. Budarina V.I. Neftehimiya. Ekologicheski chistoe poluchenie oksida propilena. HPPO-process // XI Vserossiyskiy festival' nauki: sb. dokl. Nizhniy Novgorod: NGASU, 2021. S. 41-44. URL: https://www.elibrary.ru/item.asp?id=47328061
2. Voronov N.A. Analiz sovremennyh tehnologiy proizvodstva oksida propilena // NefteGazoHimiya. 2022. № 3. S. 22-26. DOI:https://doi.org/10.24412/2310-8266-2022-3-22-26
3. Kawabata T., Yamamoto J., Koike H., Yoshida S. Trends and Views in the Development of Technologies for Propylene Oxide Production // R&D Report, “SUMITOMO KAGAKU”, 2019. Vol. 2019, no. 1. P. 8
4. Kurganova E.A., Frolov A.S., Korshunova A.I., Koshel G.N., Yarkina E.M. Hydroperoxide method for the synthesis of p-tert-butylphenol // Russian Chemical Bulletin, International Edition. 2021.Vol. 70, no. 10. P. 1951-1956. DOI:https://doi.org/10.1007/s11172-021-3302-4
5. Kurganova E.A., Frolov A.S., Koshel' G.N., Kabanova V.S. Izuchenie reakcii okisleniya ciklogeksilbenzola v prisutstvii rastvoriteley // Ot himii k tehnologii shag za shagom. 2022. T. 3, vyp. 1. S. 21-27. DOI:https://doi.org/10.52957/27821900_2022_01_21. URL: http://chemintech.ru/index.php/tor/2022tom3no1
6. Gumerova E.R., Efanova E.A., Murtazin N.F. Sovershenstvovanie processa okisleniya etilbenzola do gidroperoksida etilbenzola // Vestnik Kazanskogo tehnologicheskogo universiteta. 2015. № 18. URL: https://cyberleninka.ru/article/n/sovershenstvovanie-protsessa-okisleniya-etilbenzola-do-gidroperoksida-etilbenzola
7. Golubeva I.A., Zhagfarov F.G. Gazopererabatyvayuschie predpriyatiya Rossii – istochniki syr'ya dlya neftegazohimii. Problemy i puti resheniya // Materialy III Mezhdunar. nauch.-tehn. foruma po himicheskim tehnologiyam i neftegazopererabotke «Neftehimiya – 2020». Minsk: BGTU, 2020. S. 9-13. URL: https://elib.belstu.by/handle/123456789/36965
8. Huafeng Shao, Xiaoxue Chen, Aihua He. Strategy for isoprene-styrene multi-block copolymers obtained by stereospecific copolymerization through TiCl4/MgCl2 catalyst // Materials Today Communications. 2022. Vol. 30. URL: https://doi.org/10.1016/j.mtcomm.2021.103044
9. Anname L., Anzel F., Daniel O., Rehana M.-E. Magnetic styrene polymers obtained via coordination polymerization of styrene by Ni and Cu nanoparticles // Inorganic Chemistry Communications. 2022. Vol. 142. URL: https://doi.org/10.1016/j.inoche.2022.109586
10. Danov S.M., Sulimov A.V., Ryabova T.A., Ovcharov A.A. Osnovnye tendencii razvitiya proizvodstva oksida propilena // Trudy Nizhegorodskogo gosudarstvennogo tehnicheskogo universiteta im. R.E. Alekseeva. 2011. № 3(90). S. 267-273
11. Smolin R.A., Elimanova G.G., Batyrshin N N., Harlampidi H.E. Gidroperoksidnoe epoksidirovanie model'nogo oktena-1 v prisutstvii molibdenovoy sini // Vestnik Kazanskogo tehnologicheskogo universiteta. 2011. № 18. URL: https://cyberleninka.ru/article/n/gidroperoksidnoe-epoksidirovanie-modelnogo-oktena-1-v-prisutstvii-molibdenovoy-sini
12. Minisci F. et al. Selective functionalisation of hydrocarbons by nitric acid and aerobic oxidation catalysed by N-hydroxyphthalimide and iodine under mild conditions // Tetrahedron Letters. 2003. Vol. 44, no. 36. P. 6919 6922. DOI:https://doi.org/10.1002/chin.200349050
13. Melone L. et al. Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions // Journal of Molecular Catalysis A: Chemical. 2012. Vol. 355. P. 155-160. DOIhttps://doi.org/10.1016/j.molcata.2011.12.009.
14. Habibi D. et al. Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and ox-imes in the presence of N-hydroxyphthalimide // Applied Catalysis A: General. 2013. Vol. 466. P. 282-299. DOI:https://doi.org/10.1016/j.apcata.2013.06.045.
15. Toribio P.P., Campos-Martin J.M., Fierro J.L., Toribio P.P. Liquid-phase ethylbenzene oxidation to hydrop-eroxide with barium catalysts // Journal of Molecular Catalysis A: Chemical. 2005. Vol. 227, no. 1-2. P. 101-105. DOI:https://doi.org/10.1016/j.molcata.2004.10.003.
16. Krylov I.B., Terent’ev A.O., Krylov I.B., Vil V.A. Cross-dehydrogenative coupling for the intermolecular C–O bond formation // Beilstein journal of organic chemistry. 2015. Vol. 11, no. 1. P. 92-146. DOI:https://doi.org/10.3762/bjoc.11.13