Корролы как ароматические аналоги корриноидов и витамина B12: синтез, структурные особенности и свойства макрогетероциклов, перспективы химии материалов на их основе
Аннотация и ключевые слова
Аннотация (русский):
В обзоре обобщены литературные и собственные экспериментальные результаты по синтезу, особенностям структуры, спектральным, кислотно-основным и координационным свойствам ароматических макрогетероциклов корролов, а также кратко рассмотрены перспективы их практического применения. Продемонстрирована тесная взаимосвязь свойств корролов и особенностей их геометрической и π-электронной структуры. Показано, что при, казалось бы, несущественном изменении структуры по сравнению с наиболее изученным классом тетрапиррольных макрогетероциклических соединений – порфиринами, корролы обладают целым рядом особенностей и уникальных характеристик.

Ключевые слова:
тетрапиррольные макрогетероциклические соединения; порфирины; корролы; синтез; спектральные характеристики; кислотно-основные и координационные свойства; металлокомплексы; катализ; фотодинамическая терапия
Список литературы

1. Гуринович Г.П., Севченко А.А., Соловьев К.Н. Спектроскопия хлорофилла и родственных соединений. Минск: Наука и техника. 1968. 520 с.

2. The porphyrins. Ed. by D. Dolphin. Acad. Press: London. 1978–1979. V. 1-7.

3. Berezin B.D. Coordination compounds of porphyrins and phthalocyanines. J. Wiley Publ.: Toronto. 1981. 314 p.

4. Порфирины: структура, свойства, синтез. Под ред. Н.С. Ениколопяна. М.: Наука. 1985. 334 с.

5. Порфирины: спектроскопия, электрохимия, применение. Под ред. Н.С. Ениколопяна. М.: Наука. 1987. 384 с.

6. The porphyrin handbook. Ed. by Kadish K.M., Smith K.M., Guilard R. Acad. Press: New York. 2000-2003. V. 1-20.

7. Handbook of porphyrin science. Ed. by Kadish K.M., Smith K.M., Guliard R. Acad. Press: New York, World Scientific. 2010-2016. V. 1-35.

8. Успехи химии порфиринов. Под ред. О.А. Голубчикова. СПб: изд-во НИИ Химии СПбГУ. 1997-2007. Т. 1-5.

9. Койфман О.И., Агеева Т.А., Базанов М.И., Березин Д.Б. и др. Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений. Москва: Ленанд, 2019. 848 с.

10. The porphyrin handbook. Ed. by Kadish К. M., Smith К. M., Guilard R. Acad. Press: New York. 2000. V. 2. Р. 1-200.

11. Березин Д. Б. Макроциклический эффект и структурная х«имия порфиринов. М.: Красанд. 2010. 424 с.

12. Paolesse R. Synthesis and modifications of porphyrinoids. Topics in heterocyclic chemistry. Springer-Verlag: Berlin. 2014. V. 33. Р. 1–34.

13. Березин Д.Б., Каримов Д.Р., Кустов А.В. Корролы и их производные: синтез, свойства, перспективы практического применения. Под ред. О.И. Койфмана. М.: Ленанд. 2018. 304 с.

14. Крук Н.Н. Строение и оптические свойства тетрапиррольных соединений. Минск: изд. БГТУ. 2019. 223 с.

15. The porphyrin handbook. Ed. by Kadish К. M., Smith К. M., Guilard R. Acad. Press: New York. 2000. V. 6. 350 p.

16. Paolesse R. Applications of porphyrinoids. Topics in heterocyclic chemistry. Springer-Verlag: Berlin. 2014. 184 p.

17. Sessler J.L., Weghorn S.J. Expanded, contacted and isomeric porphyrins. In: Tetrahedron Org. Chem. Series. Pergamon. Oxford. 1997. V. 15. P. 11.

18. Paolesse R. Synthesis of corroles. The porphyrin handbook. Ed. by Kadish K.M., Smith K.M., Guilard R. Acad. Press, New York, 2000. V. 2. P. 201-232.

19. Erben Ch., Will S., Kadish K.M. Metallocorroles: molecular structure, spectroscopy and electronic states. The porphyrin handbook. Ed. by Kadish K.M., Smith K.M., Guilard R. Acad. Press, New York. 2000. V. 2. P. 235–300.

20. Guilard R., Barbe J.-M., Stern Ch., Kadish K.M. New developments in corrole chemistry: special emphasis on face-to-face bismacrocycles. The porphyrin handbook. Ed. by Kadish K.M., Smith K.M., Guilard R. Acad. Press, New York. 2003. V. 18. N. 116. P. 303–349.

21. Walker F.A., Licoccia S., Paolesse R. Iron corrolates: Unambiguous chloroiron(III) (corrolate)2-. π-cation radicals. J. Inorg. Biochem. 2006. V. 100. P. 810–837.

22. Aviv I., Gross Z. Corrole-based applications. Chem. Commun. 2007. P. 1987–1999.

23. Paolesse R. The little big porphyrinoid. Synlett. 2008. N.15. P. 2215–2230.

24. Aviv-Harel I., Gross Z. Aura of corroles. Chem. Eur. J. 2009. V. 15. N 34. P. 8382 – 8394.

25. Aviv-Harel I., Gross Z. Coordination chemistry of corroles with focus on main group elements. Coord. Chem. Rev. 2011. V. 255. P. 717 – 736.

26. Каримов Д. Р. Синтез, спектральные характеристики и реакционная способность корролов с различным типом функционального замещения: дисс. … канд. хим. наук. Иваново: ИГХТУ. 2011. 180 с.

27. Palmer J.H. Transition metal corrole. Molecular electronic structure of transition metal complexes. / Ed. by D.M.P. Mingos, P. Day, J.P. Dahl. Springer: Berlin. 2012. V. 142. P. 49-90.

28. Liu H.-Y, Mahmood M. H. R., Qiu Sh.-X., Chang Ch. K. Recent developments in manganese corrole chemistry. Coord. Chem. Rev. 2013. V. 257. P. 1306–1333.

29. Barata J.F.B., Santos C.I.M., Graca M., Neves P.M.S., Faustino M.A.F., Cavaleiro J.A.S. Functionalization of corroles. Topics in heterocyclic chemistry. Springer-Verlag: Berlin. 2013. V. 33. Р. 79-141.

30. Thomas K.E., Alemayehu A.B., Conradie J., Beavers Ch.M., Ghosh A. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights. Acc. Chem. Res. 2012. V. 45. N. 8. P. 1203–1214.

31. Mack J., Kobayashi N., Shen Z. The effect of structural modifications on the properties of porphyrinoids. Handbook of porphyrin science. Ed. by Kadish K.M., Smith K.M., Guilard R. World Scient. Publ.: Singapore. 2013. V. 23. Ch. 109. P. 281-371.

32. Ву Тхи Тхао Металлопорфириноиды: устойчивость в растворе и твердой фазе, особенности электрокатализа и тонкопленочные материалы на их основе: дисс. … канд. хим. наук. Иваново: ИГХТУ. 2016. 206 с.

33. Barata J.F.B., Graca M., Neves P.M.S., Faustino M.A.F., Tome A.C., Cavaleiro J.A.S. Strategies for corrole functionalization. Chem. Rev. 2017. V. 117. N 4. P. 3192–3253.

34. Stepień M., Latos-Grazyński L. Aromaticity and tautomerism in porphyrins and porphyrinoids. In: Topics in Heterocyc. Chem. 2008. V. 19. P. 83-153.

35. Johnson A.W., Kay I.T. Corroles. Part I. Synthesis. J. Chem. Soc. 1965. P. 1620–1629.

36. Paolesse R., Licoccia S., Fanciullo M., Morgante E., Boschi T. Synthesis and characterization of cobalt(III) complexes of meso-phenyl-substituted corroles. Inorg. Chim. Acta. 1993. V. 203. P. 107–114.

37. Paolesse R., Licoccia S., Bandoli G., Dolmella A., Boschi T. First direct synthesis of a corrole ring from a monopyrrolic precursor. Crystal and molecular structure of (triphenylphosphine)(5,10,15-triphenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III)-dichloromethane. Inorg. Chem. 1994. V. 33. N. 6. P. 1171–1176.

38. Gross Z., Galili N., Saltsman I. The first direct synthesis of corroles from pyrrole. Angew. Chem. Int. Ed. 1999. V.38. N. 10. P.1427–1429.

39. Paolesse R., Jaquinod L., Nurco D.J., Mini S., Sagone F., Boschi T., Smith K.M. 5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chem. Commun. 1999. N. 14. P.1307–1308.

40. Бутин К. П., Белоглазкина Е.К., Зык Н.В. Металлокомплексы с неинноцентными лигандами. Успехи химии. 2005. Т. 74. В. 6. С. 585-609.

41. Mashiko T., Dolphin D. Porphyrins, hydroporphyrins, azaporphyrins, phthalocyanines, corroles, corrins and related macrocycles. Comprehensive coordination chemistry. Ed. by G. Wilkinson, R.D. Guilard, J.A. McCleverty. Pergamon Press: Oxford. 1984. V. 2. P. 813–898.

42. McGown A.J., Badiei Y.M., Leeladee P., Prokop K.A., DeBeer S., Goldberg D.P. Synthesis and reactivity of high-valent transition metal corroles and corrolazines. Handbook of porphyrin science. 2011. V. 14. N. 66. P. 525–599.

43. Steene E., Wondimagegn T., Ghosh A. Electrochemical and electronic absorption spectroscopic studies of substituent effects in iron(IV) and manganese(IV) corroles. Do the compounds feature high-valent metal centers or noninnocent corrole ligands? Implications for peroxidase compound I and II intermediates. J. Phys. Chem. B. 2001. V. 105. P. 11406–11413.

44. Golubkov G., Bendix J., Gray H.B., Mahammed A., Goldberg I., DiBilio A.J., Gross Z. High-valent manganese corroles and the first perhalogenated metallocorrole catalyst. Angew. Chem. 2001. V. 113. N. 11. P. 2190–2192.

45. Ou Zh., Erben C., Autret M., Will S., Rosen D., Lex J., Vogel E., Kadish K.M. Manganese(III) and manganese(IV) corroles: synthesis, spectroscopic, electrochemical and X-ray structural characterization. J. Porph. Phthaloc. 2005. V. 9. P. 398–412.

46. Broring M., Hell Ch., Brandt C.D. Iodomanganesecorrole – a stable MnIV–I species. Chem. Commun. 2007. V. 18. P. 1861–1862.

47. Vogel E., Will S., Schulze Tilling A., Neumann L., Lex J., Bill E., Trautwein A.X., Wieghardt K. Metallocorroles with formally tetravalent iron. Angew. Chem. Int. Ed. Engl. 1994. V. 33. N. 7. P. 731–735.

48. Cai Sh., Walker F.A., Licoccia S. NMR and EPR investigations of iron corrolates: iron(III) corrolate  cation radicals or iron(IV) corrolates? Inorg. Chem. 2000. V. 39. N. 16. P. 3466–3478.

49. Simkhovich L., Goldberg I., Gross Z. Iron(III) and iron(IV) corroles: synthesis, spectroscopy, structures, and no indications for corrole radicals. Inorg. Chem. 2002. V. 41. N. 21. P. 5433–5439.

50. Simkhovich L., Gross Z. Halogeno-coordinated iron corroles. / Inorg. Chem. 2004. V. 43. N. 20. P. 6136–6138.

51. Walker F.A., Licoccia S., Paolesse R. Iron corrolates: unambiguous chloroiron(III) (corrolate)2-. π-cation radicals. J. Inorg. Biochem. 2006. V. 100. P. 810–837.

52. Ye Shengfa, Tuttle T., Bill E., Simkhovich L., Gross Z., Thiel W., Neese F. The electronic structure of iron corroles: a combined experimental and quantum chemical study. Chem. Eur. J. 2008. V. 14. N. 34. P. 10839–10851.

53. Will S., Lex J., Vogel E., Adamian V.A., Van Caemelbecke E., Kadish K.M. Synthesis, characterization and electrochemistry of σ-bonded cobalt corroles in high oxidation state. Inorg. Chem. 1996. V. 35. N. 19. P. 5577–5583.

54. Kadish K.M., Shao J., Ou Zh., Gros C.P., Bolze F., Barbe J.-M., Guilard R. Alkyl- and aryl-substituted corroles. 4. Solvent effects on the electrochemical and spectral properties of cobalt corroles. Inorg. Chem. 2003. V. 42. N. 13. P. 4062–4070.

55. Maiti N., Lee J., Kwon S.J., Kwak J., Do Y., Churchill D.G. Synthetic, crystallographic and electrochemical studies of thienyl-substituted corrole complexes of copper and cobalt. Polyhedron. 2006. V. 25. P. 1519–1530.

56. Huanga Sh., Fanga Yu., Lüa A., Lua G., Ou Zh., Kadish K.M. Synthesis, characterization and solvent/structural effects on spectral and redox properties of cobalt triphenylcorroles in nonaqueous media. J. Porph. Phthaloc. 2012. V. 16. P. 958–967.

57. Ghosh A., Wondimagegn T., Parusel A.B.J. Electronic structure of gallium, copper and nickel complexes of corrole. High-valent transition metal centers versus noninnocent ligands. J. Am. Chem. Soc. 2000. V. 122. N. 21. P.5100–5104.

58. Wasbotten I. H., Wondimagegn T., Ghosh A. Electronic absorption, resonance Raman and electrochemical studies of planar and saddled copper(III) meso-triarylcorroles. Highly substituent-sensitive Soret bands as a distinctive feature of high-valent transition metal corroles. J. Am. Chem. Soc. 2002. V. 124. N. 27. P. 8104–8116.

59. Brückner C., Brinas R.P., Krause-Bauer J.A. X-ray structure and variable temperature NMR spectra of [meso-triarylcorrolato]copper(III). Inorg. Chem. 2003. V. 42. P. 4495–4497.

60. Pierloot K., Zhao H., Vancoillie S. Copper corroles: the question of noninnocence. Inorg. Chem. 2010. V. 49. N. 22. P. 10316–10329.

61. Alemayehu A., Conradie J., Ghosh A. A First TDDFT study of metallocorrole electronic spectra: copper meso-triarylcorroles exhibit hyper spectra. Eur. J. Inorg. Chem. 2011. P. 1857–1864.

62. Lu G., Lin W., Fang Y., Zhu W., Ji X., Ou Zh. Synthesis and electrochemical properties of meso-phenyl substituted copper corroles. Solvent effect on copper oxidation state. J. Porph. Phthaloc. 2011. V. 15. P. 1265–1274.

63. Stefanelli M., Shen J., Zhu W., Mastroianni M., Mandoj F., Nardis S., Ou Zh., Kadish K.M., Fronczek F.R., Smith K.M., Paolesse R. Demetalation of silver(III) corrolates. Inorg. Chem. 2009. V. 48. P. 6879–6887.

64. Sinha W., Sommer M.G., Deibel N., Ehret F., Sarkar B., Kar S. Silver corrole complexes: unusual oxidation states and near-IR-absorbing dyes. Chem. Eur. J. 2014. V. 20. P. 15920–15932.

65. Thomas K. E., Alemayehu A.B., Conradie J., Beavers Ch., Ghosh A. Synthesis and molecular structure of gold triarylcorroles. Inorg. Chem. 2011. V. 50. Р. 12844−12851.

66. Alemayehu A.B., Hansen L.K., Ghosh A. Non-planar, noninnocent and chiral: a strongly sadded metallocorrole. Inorg. Chem. 2010. V. 49. N. 17. P. 7608–7610.

67. Ding T., Harvey J.D., Ziegler Ch. J. N-H tautomerization in triaryl corroles. J. Porph. Phthaloc. 2005. V. 9. P. 22–27.

68. Ivanova Yu.B., Savva V.A., Mamardashvili N.Z., Starukhin A.S., Ngo T.H., Dehaen W., Maes W., Kruk M.M. Corrole NH Tautomers spectral features and individual protonation. J. Phys. Chem. A. 2012. V. 116. P. 10683−10694.

69. Kruk M., Ngo Th. H., Verstappen P., Starukhin A., Hofkens J., Dehaen W., Maes W. Unraveling the fluorescence features of individual corrole NH tautomers. J. Phys. Chem. A. 2012. V. 116. P. 10695−10703.

70. Kruk M., Ngo Th. H., Savva V., Starukhin A., Dehaen W., Maes W. Solvent-dependent deprotonation of meso-pyrimidinylcorroles: absorption and fluorescence studies. / J. Phys. Chem. A. 2012. V. 116. P. 10704−10711.

71. Beenken W., Presselt M., Ngo Th.H., Dehaen W., Maes W., Kruk M. Molecular structures and absorption spectra assignment of corrole NH tautomers. / J. Phys. Chem. A. 2014. V.118. P. 862−871.

72. Thomas K.E., Conradie J., Hansen L.K., Ghosh A. Corroles cannot ruffle. Inorg. Chem. 2011. V. 50. P. 3247–3251.

73. Senge M.О. Highly substituted porphyrins. In: The porphyrin handbook. Ed. by Kadish К. M., Smith К. M., Guilard R. Acad. Press: New York. 2000. V. 1. P. 239–347.

74. Zhang X.-F., Huang J., Zhao H., Zheng X., Junzhong Z. Photophysical properties of nonperiferally and peripherally substituted triazatetrabenzocorrole phosphorous dihydroxy and singlet oxygen generation. J. Photochem. Photobiol. A, Chemistry. 2010. V. 215. P. 96-102.

75. Zhang X.-F., Rong Y. Silicon tetrabenzotriaza corrole and silicon phthalocyanine: synthesis, photophysics and singlet oxygen generation. J. Photochem. Photobiol. A, Chemistry. 2011. V. 222. P. 141-145.

76. Pomarico G., Xiao X., Nardis S., Paolesse R., Fronczek F.R., Smith K.M., Fang Yu., Ou Zh., Kadish K.M. Synthesis and characterization of free-base, copper and nickel isocorroles. Inorg Chem. 2010. V. 49. N. 12. P. 5766–5774.

77. Nardis S., Pomarico G., Fronczek F.R., Vicente M.G.H., Paolesse R. One-step synthesis of isocorroles. Tetrahedron Letters. 2007. V. 48. P. 8643–8646.

78. Hill J.P., Ishihara Sh., Ariga K. Structures and properties of non-planar tetrapyrroles. Handbook of porphyrin science. Eds. K.M. Kadish, K.M. Smith, R. Guilard. World Scient. Publ.: Singapore. 2013. V. 18. N. 81. P. 123-167.

79. Fujino K., Hirata Y., Kawabe Y., Morimoto T., Srinivasan A., Toganoh M., Miseki Y., Kudo A., Furuta H. Confusion and neo-confusion: corrole isomers with an NNNC core. Angew. Chem. 2011. V. 123. P. 6987–6991.

80. Narayanan S.J., Sridevi B., Chandrashekar T.K. Core-modified smaragdyrins: first examples of stable meso-substituted expanded corrole. Org. Lett. 1999. V. 1. N. 4. P. 587-590.

81. Misra R., Kumara R., PrabhuRaja V., Chandrashekar T.K. Modified push–pull expanded corroles: Syntheses, structure and nonlinear optical properties. J. Photochem. Photobiol. A: Chem. 2005. V. 175. P. 108–117.

82. Mandoj F., Nardis S., Pomarico G., Paolesse R. Demetalation of corrole complexes: an old dream turning into reality. J. Porph. Phthal. 2008. V. 12. P. 19 – 26.

83. Dolphin D., Johnson A.W., Leng J., van den Broek P. The base-catalysed cyclisations of 1,19-dideoxybiladienes-a,c. J. Chem. Soc. C. 1966. P. 880–884.

84. Engel J., Gossauer A., Johnson A.W. Synthesis of tetradehydrocorrins, corroles and corrologens related to 12-decarboxyuroporphyrin III and uroporphyrin III. J. Chem. Soc., Perkin 1. 1978. P. 871–875.

85. Harris R.L.N., Johnson A.W., Kay I.T. A stepwise synthesis of unsymmetrical porphyrins. J. Chem. Soc. C. 1966. P. 22–29.

86. Pandey R.K., Zhou H., Gerzevske K., Smith K.M. Stepwise synthesis of 1,19-dibromo-a,c-biladienes and their conversion into biliverdins, corroles and azaporphyrins. Chem. Commun. 1992. N. 2. P. 183–185.

87. Pandey R.K., Gerzevske K.R., Zhou H., Smith K.M. New synthesis of biliverdins, corroles and azaporphyrins from 1,19-dibromo-a,c-biladiene salts. J. Chem. Soc., Perkin Trans. 1. N. 8. 1994. P. 971–977.

88. Neya S., Ohyama O., Funasaki N. An improved synthesis of corrole. Tetrahedron Lett. 1997. V. 38. N. 23. P. 4113–4116.

89. Conlon M., Johnson A.W., Overend W.R., Rajapaksa D., Elson C.M. Structure and reactions of cobalt corroles. J. Chem. Soc., Perkin Trans. 1. 1973. P. 2281 – 2288.

90. Vogel E., Broring M., Fink J., Rosen D., Schmickler H., Lex J., Chan K.W.K., Wu Y.D., Plattner D.A., Nendel M., Houk K.N. From porphyrin isomers to octapyrrolic “figure eight” macrocycles. Angew. Chem., Int. Ed. Engl. 1995. V. 34. N. 22. P. 2511–2514.

91. Broadhurst M.J., Grigg R., Johnson A.W. Sulphur extrusion reactions applied to the synthesis of corroles and related systems. J. Chem. Soc, Perkin Trans. 1. 1972. P.1124 – 1135.

92. Vicente M.G.H., Smith K.M. Synthesis and functionalizations of porphyrin macrocycles. Curr. Org. Synth. 2014. V. 11. N. 1. P. 3 – 28.

93. Paolesse R., Nardis S., Sagone F., Khoury R.G. Synthesis and functionalization of meso-aryl-substituted corroles. J. Org. Chem. 2001. V. 66. N. 2. P.550 – 556.

94. Ka J.-W., Cho W.S., Lee C.-H. Expedient synthesis of corroles by oxidant-mediated, direct -’ coupling of tetrapyrromethanes. Tetrahedron Lett. 2000. V. 41. N. 42. P. 8121–8125.

95. Gryko D.T., Koszarna B. Refined methods for the synthesis of meso-substituted A3- and trans-A2B-corroles. Org. Biomol. Chem. 2003. V. 1. P. 350–357.

96. Koszarna B., Gryko D.T. Efficient synthesis of meso-substituted corroles in a H2O – MeOH mixture. J. Org. Chem. 2006. V.71. N. 10. P. 3707–3717.

97. Gryko D.T., Jadach K. A simple and versatile one-pot synthesis of meso-substituted trans-A2B-corroles. J. Org. Chem. 2001. V. 66. N. 12. P.4267–4275.

98. Guilard R., Gryko D.T., Canard G., Barbe J.M., Koszarna B., Brandes S., Tasior M. Synthesis of corroles bearing up to three different meso substituents. Org. Lett. 2002. V. 4. N. 25. P. 4491–4494.

99. Egorova O.A., Tsay O.G., Khatua S., Huh J.O., Churchill D.G. A chiral meso-ABC-corrolatochromium complex. Inorg. Chem. 2009. V. 48. N. 11. P. 4634 – 4636.

100. Gryko D.T., Tasior M., Koszarna B. Parallel synthesis of meso-substituted corroles and meso-substituted [22]pentaphyrins(1.1.1.0.0) from diacyldipyrromethanes. J. Porph. Phthaloc. 2003. V. 7. P. 239-248.

101. Decreau R.A., Collman J.P. Corrole synthesis by dipyrromethane-dicarbinol and 2,2’-bipyrrole condensation. Tetrahedron Lett. 2003. V. 44. P. 3323-3327.

102. Hori T., Osuka A. Nucleophilic substitution reactions of meso-5,10,15-tris(pentafluorophenyl)-corrole; synthesis of ABC-type corroles and corrole-based organogels. Eur. J. Org. Chem. 2010. P. 2379–2386.

103. Naito W., Yasuda N., Morimoto T., Shigeta Y., Takaya H., Hisaki I., Maeda H. Doubly N-methylated porphyrinoids. Org. Lett. 2016. V. 18. P. 3006-3009.

104. Broadhurst M.J., Grigg R., Shelton G., Johnson A.W. Protonation, alkylation and acetylation of corroles and 21,24-dioxacorroles. J.C.S. Perkin I. 1972. P. 143-151.

105. Paolesse R., Jaquinod L., Senge M.O., Smith K.M. Functionalization of corroles: formylcorroles. J. Org. Chem. 1997. V. 62. N. 18. P. 6193-6198.

106. Saltsman I., Mahammed A., Goldberg I., Tkachenko E., Botoshansky M., Gross Z. Selective substitution of corroles: nitration, hydroformylation and chlorosulfonation. J. Am. Chem. Soc. 2002. V. 124. N. 25. P. 7411-7420.

107. Paolesse R., Nardis S., Venanzi M., Mastroianni M., Russo M., Fronczek F.R., Vicente M.G.H. Vilsmeier formylation of 5,10,15-triphenylcorrole: expected and unusual products. Chem. Eur. J. 2003. V.9. P. 1192-1197.

108. Saltsman I., Goldberg I., Gross Z. One step conversations of a simple corrole into chiral and amphiphilic derivatives. Tetrahedron Lett. 2003. V. 44. P. 5669-5673.

109. Sudhakar K., Velkannan V., Girbabu L. Synthesis, electrochemical and photophysical properties of -carboxytriarylcorroles. Tetrahedron Lett. 2012. V. 53. P. 991-993.

110. Tortora L., Nardis S., Fronczek F.R., Smith K.M., Paolesse R. Functionalization of the corrole ring: the role of isocorrole intermediates. Chem. Commun. 2011. V. 47. P. 4243-4245.

111. Stefanelli M., Pomarico G., Tortora L., Nardis S., Fronczek F.R., McCandless G.T., Smith K.M., Manowong M., Fang Y., Chen P. β-Nitro-5,10,15-tritolylcorroles. Inorg. Chem. 2012. V. 51. P. 6928-6942.

112. Stefanelli M., Nardis S., Fronczek F.R., Smith K.M., Paolesse R. Copper β-trinitrocorrolates. J. Porph. Phthaloc. 2013. V. 17. P. 1–7.

113. Pomarico G., Fronczek F.R., Nardis S., Smith K.M., Paolesse R. Synthetic protocols for the nitration of corroles. J. Porph. Phthaloc. 2011. V. 15. P. 1085-1092.

114. Nardis S., Stefanelli M., Mohite P., Pomarico G., Tortora L., Manowong M., Chen P., Kadish K.M., Fronczek F.R., McCandless G.T. β-Nitro-derivatives of iron corrolates. Inorg. Chem. 2012. V. 51. P. 3910-3920.

115. Mastroianni M., Zhu W., Stefanelli M., Nardis S. Fronczek F.R., Smith K.M., Ou Z., Kadish K.M., Paolesse R. β-Nitro-derivatives of germanium(IV) corrolates. Inorg. Chem. 2008. V. 47. P. 11680-11687.

116. Pomarico G., Tortora L., Fronczek F.R., Smith K.M., Paolesse R. Synthetic protocols for the nitration of corroles. Selective nitration and bromination of surprisingly ruffled phosphorus corroles. J. Inorg. Biochem. 2016. V. 158. P. 15-23.

117. Gross Z., Mahammed A. A Selective sulfonation and deuteration of free-base corroles. J. Porph. Phthaloc. 2002. V. 6. P. 553–555.

118. Naitana M.L., Nardis S., Lentini S., Cicero D.O., Paolesse R. / Widening of scope of the corrole sulfonation. J. Porph. Phthaloc. 2015. V. 19. P. 735–744.

119. Vestfrid J., Kothari R., Kostenko A., Goldberg I., Tumanskii B., Gross Z. Intriguing physical and chemical properties of phosphorus corroles. Inorg. Chem. 2016. V. 55. P. 6061-6067.

120. Palmer J.H., Day M.W., Wilson A.D., Henling L.M., Gross Z., Gray H.B. Iridium corroles. J. Am. Chem. Soc. 2008. V. 130. P. 7786–7787.

121. Mahammed A., Tumanskii B., Gross Z. Effect of bromination on the electrochemistry, frontier orbitals, and spectroscopy of metallocorroles. J. Porph. Phthaloc. 2011. V. 15. P. 1275-1286.

122. Березин Д.Б., Шухто О.В., Тхао Ву Тхи, Каримов Д.Р., Березин Б.Д. Кинетическая устойчивость комплексов корролов с марганцем, медью и цинком в средах на основе уксусной и серной кислот. Журн. неорганич. химии. 2014. Т. 59. № 12. С. 1769-1776.

123. Gao D., Canard G., Giorgi M., Balaban T.S. Synthesis and characterization of copper undecaarylcorroles and the first undecaarylcorrole free base. Eur. J. Inorg. Chem. 2012. P. 5915-5920.

124. Nardis S., Pomarico G., Stefanelli M., Lentini S., Cicero D.O., Fronczek F.R., Smith K.M., Paolesse R. The scope of the -halogenation of triarylcorroles. J. Porph. Phthaloc. 2016. V. 20. P. 465-474.

125. Stefanelli M., Naitana M.L., Chiarini M., Nardis S., Ricci A., Fronczek F.R., Lo Sterzo C., Smith K.M., Paolesse R. Efficient synthesis of -alkynylcorroles. Eur. J. Org. Chem. 2015. V. 2015. N 31. P. 6811-6816.

126. Vestfrid J., Botoshansky M., Palmer J.H., Durrell A.C., Gray H.B., Gross Z. Iodinated aluminium(III) corroles with long-lived triplet excited states. J. Am. Chem. Soc. 2011. V. 133. P. 12899–12901.

127. Vestfrid J., Goldberg I., Gross Z. Tuning the photophysical and redox properties of metallocorroles by iodination. Inorg. Chem. 2014. V. 53. P. 10536–10542.

128. Mahammed A., Botoshansky M., Gross Z. Chlorinated corroles. Dalton Trans. 2012. V. 41. P. 10938 – 10940.

129. Ngo T.H., Puntoriero F., Nastasi F., Robeyns K., Van Meervelt N., Campagna S., Dehaen W., Maes W. Synthetic, structural and photophysical exploration of meso-pyrimidinylsubstituted AB2-corroles. Chem.- Eur. J. 2010. V. 16. P. 5691–5705.

130. Ngo T.H., Rossom W.V., Dehaen W., Maes W. Reductive demetallation of Cu-corroles – a new protective strategy towards functional free-base corroles. Org. Biomol. Chem. 2009. V. 7. P. 439-443.

131. Ooi S., Yoneda T., Tanaka T., Osuka A. meso-Free-base corroles: synthesis, structures, properties and chemical reactivities. Chem.-Eur. J. 2015. V. 21. P. 7772–7779.

132. Steene E., Dey A., Ghosh A. β-Octafluorocorroles. J. Am. Chem. Soc. 2003. V.125. P.16300–16309.

133. Schmidlehner M., Faschinger F., Reith L.M., Ertl M., Schoefberger W. Water-soluble metalated and non-metalated A2B- and A3-corrole/aminoacid conjugates: syntheses, characterization and properties. Appl. Organometal. Chem. 2013. V. 27. N. 7. P. 395–405.

134. Stefanelli M., Mandoj F., Mastroianni M., Nardis S., Mohite P., Fronczek F.R., Smith K.M., Kadish K.M., Xiao X., Ou Z., Chen P., Paolesse R. Amination reaction on copper and germanium β-nitrocorrolates. Inorg. Chem. 2011. V. 50. P. 8281–8292.

135. Stefanelli M., Mandoj F., Nardis S., Fronczek F.R., McCandless G.T., Smith K.M., Paolesse R. Corrole and nucleophylic aromatic substitution are not incompatible: a novel route to 2,3-difunctionalized copper corrolates. Org. Biomol. Chem. 2015. V. 13. P. 6611–6618.

136. Scrivanti A., Beghetto V., Matteoli U., Antonaroli S., Marini A., Mandoj F., Paolesse R., Crociani B. Iminophosphine-palladium(0) complexes as highly active catalysts in the Suzuki reaction. Synthesis of undecaaryl substituted corroles. Tetrahedron Lett. 2004. V. 45. N. 30. P. 5861–5864.

137. Berg S., Thomas K.E., Beavers C.M., Ghosh A. A undecaphenylcorroles. Inorg. Chem. 2012. V. 51. P. 9911-9916.

138. Gao D., Andeme Edzang J., Diallo A.K., Dutrong T., Balaban T.S., Videlot-Ackermann, Terazzi E., Canard G. Light absorption and hole-transport properties of copper corroles: from aggregates to a liquid crystal mesophase. New J. Chem. 2015. V. 39. P. 7140-7146.

139. Gao D., Canard G., Giorgi M., Vanloot P., Balaban T.S. Electronic and steric effects of the peripheral substitution in deca- and undecaaryl metallocorroles. Eur. J. Inorg. Chem. 2014. N. 2. V. 2014. – P. 279–287.

140. Березин Д.Б., Крестьянинов М.А. Строение Н-ассоциатов порфиринов, инвертированных порфириноидов и корролов с N.N-диметилформамидом. Журн. структурн. химии. 2014. Т. 55. № 5. С. 868−876.

141. Ding T., Aleman E.A., Modarelli D.A., Ziegler C.J. Photophysical properties of a series of free-base corroles. J. Phys. Chem. A. 2005. V. 109. P. 7411–7417.

142. Ou Z., Sun H., Zhu W., Da Z., Kadish K.M. Solvent and acidity effects on the UV-visible spectra and protonation-deprotonation of free-base octaethylcorrole. J. Porph. Phthaloc. 2008. V. 12. P. 1–10.

143. Shen J., Shao J., Ou Z., E W., Koszarna B., Gryko D.T., Kadish K.M. Electrochemistry and spectroelectrochemistry of meso-substituted free-base corroles in nonaqueous media: reactions of (Cor)H3, [(Cor)H4]+ and [(Cor)H2]-. Inorg. Chem. 2006. V.45. N.5. P. 2251–2265.

144. Ventura B., Degli Esposti A., Koszarna B., Gryko D.T., Flamigni L. Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J. Chem. 2005. V. 29. P. 1559–1566.

145. Stillman M. J. Theoretical aspects of the optical spectroscopy of porphyrinoids. Handbook of porphyrin science. Eds. K.M. Kadish, K.M. Smith, R. Guilard. World Scient. Publ.: Singapore. 2013. V. 27. N. 134. Р. 255–301.

146. Каримов Д.Р., Баранников В.П., Мальцева О.В., Кумеев Р.С., Березин Д.Б. Незавершенные кислотно-основные взаимодействия корролов с электронодонорными растворителями. Известия ВУЗов. Химия и химич. технол. 2011. №4. С. 26–33.

147. Berezin D.B., Karimov D.R. Porphyrins and porphyrin analogs interactions to coordinating organic solvents. Macroheterocycles. 2009. N. 2. P. 42–51.

148. Ou Z., Shen J., Shao J., E W., Galezowski M., Gryko D.T., Kadish K.M. Protonated free-base corroles: acidity, electrochemistry and spectroelectrochemistry of [(Cor)H4]+, [(Cor)H5]2+ and [(Cor)H6]3+. Inorg. Chem. 2007. V.46. N.7. P. 2775–2786.

149. Лихонина А.Е., Крестьянинов М.А., Моршнев Ф.К., Критский Е.Л., Кудаярова Т.В., Березин Д.Б. Взаимодействие мезо-фенилзамещенных порфириноидов с карбоновыми кислотами и термический анализ их катионных солей. Журн. физич. химии. 2020. Т. 94. № 1. С. 110-118.

150. Березин Д.Б., Лихонина А.Е., Шухто О.В., Каримов Д.Р., Серов И.Н., Крестьянинов М.А. Спектральное и квантово-химическое исследование основности фенилзамещенных порфириноидов. Журнал общей химии. 2020. Т. 90. В. 6. С. 877-887.

151. Ghosh A., Wasbotten I.H., Conradie J. Electronic absorption and resonance Raman signatures of hyperporphyrins and nonplanar porphyrins. J. Phys. Chem. 2003. V. 107. N. 15. P. 3613–3623.

152. Березин Б.Д. Электронные и стерические эффекты в координационной химии. Координац. химия. 1993. Т. 19. Вып. 5. С. 358–367.

153. Edwards N.Y., Eikey R.A., Loring M.I., Abu-Omar M.M. High-valent imido complexes of manganese and chromium corroles. Inorg. Chem. 2005. V.44. N.10. P. 3700–3708.

154. Stefanelli M., Nardis S., Tortora L., Fronczek F.R., Smith K.M., Licoccia S., Paolesse R. Nitration of iron corrolates: further evidence for non-innocence of the corrole ligand. Chem. Commun. 2011. V. 47. P. 4255–4257.

155. Licoccia S., Paolesse R. Metal complexes of corrole and other corrinoids. Struct. Bonding. Metal complexes with tetrapyrrole ligands III. 1995. V. 84. P. 71.

156. Gross Z., Simkhovich L., Galili N. First catalysis by corrole metal complexes: epoxidation, hydroxylation and cyclopropanation. Chem. Commun. 1999. P. 599–600.

157. Gross Z., Golubkov G., Simkhovich L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew. Chem., Int. Ed. 2000. V. 39. P. 4045–4047.

158. Liu H.-Y., Lai T.-S., Yeung L.-L., Chang C.K. First synthesis of perfluorinated corrole and its Mn=O complex. Org. Lett. 2003. V. 5. P. 617–620.

159. Zhang R., Harischandra D.N., Newcomb M. Laser flash photolysis generation and kinetic studies of corrole- manganese(V)-oxo intermediates. Chem. Eur. J. 2005. V. 11. P. 5713–5720.

160. Luobeznova I., Raizman M., Goldberg I., Gross Z. Synthesis and full characterization of molybdenum and antimony corroles and utilization of the latter complexes as very efficient catalysts for highly selective aerobic oxygenation reactions. Inorg. Chem. 2006. V.45. P. 386–394.

161. Wagnert L., Berg A., Stavitski E., Berthold T., Kothe G., Goldberg I., Mahammed A., Simkhovich L., Gross Z., Levanon H. Exploring the photoexcited triplet states of aluminum and tin corroles by time-resolved Q-band EPR. Appl. Magn. Reson. 2006. V. 30. P. 591–604.

162. Collman J.P., Zeng L., Decreau R.A. Multiple active oxidants in competitive epoxidations catalyzed by porphyrins and corroles. Chem. Commun. 2003. P. 2974–2975.

163. Wang S.H., Mandimutsira B.S., Todd R., Ramdhanie B., Fox J.P., Goldberg D.P. Catalytic sulfoxidation and epoxidation with a Mn(III) triazacorrole: evidence for a “third oxidant” in high-valent porphyrinoid oxidations. J. Am. Chem. Soc. 2004. V. 126. P. 18–19.

164. Bose S., Pariyar A., Biswas A.N., Das P., Bandyopadhyay P. Manganese(III) corrole catalyzed selective oxidation of alcohols to carbonyl compounds by tert-butyl peroxide under mild condition. Catal. Commun. 2011. V. 12. P. 446–449.

165. Meier-Callahan A.E., Di Bilio A.J., Simkhovich L., Mahammed A., Goldberg I., Gray H.B., Gross Z. Chromium corroles in four oxidation states. Inorg. Chem. 2001. V.40. P. 6788–6793.

166. Mahammed A., Gray H.B., Meier-Callahan A.E., Gross Z. Aerobic oxidations catalysed by chromium corroles. J. Am. Chem. Soc. 2003. V. 125. P. 1162–1163.

167. Collman J.P., Kaplum M., Decreau R.A. Metal corroles as electrocatalysts for oxygen reduction. Dalton Trans. 2006. P. 554–559.

168. Mahammed A., Gross Z. Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. J. Am. Chem. Soc. 2005. V. 127. P. 2883–2887.

169. Mahammed A., Gross Z. Highly efficient catalase activity of metallocorroles. Chem. Commun. 2010. V. 46. P. 7040–7042.

170. Базанов М.И., Березина Н.М., Каримов Д.Р., Березин Д.Б. Электрохимические и электрокаталитические свойства мезо-трифенилкоррола и его комплексов с Mn (III), Co(III), Cu (III) и Zn (II). Электрохимия. 2012. Т. 48. № 9. С. 992–997.

171. Березина Н.М., Каримов Д.Р., Базанов М.И., Березин Д.Б. Влияние функционального замещения на электрохимические характеристики и электрокаталитическую активность мезо-трифенилкоррола и его комплексов с Cu(III) и Mn(III). Известия ВУЗов. Химия и химич. технол. 2013. Т. 56. Вып. 6. С. 37–41.

172. Березина Н.М., Тхао Ву Тхи, Каримов Д.Р., Кумеев Р.С., Кустов А.В., Базанов М.И., Березин Д.Б. Синтез и свойства продуктов β-бромирования металлокомплексов мезо-трифенилкоррола. Журн. общей химии. 2014. Т. 84. № 4. С. 661–669.

173. Березина Н.М., Тхао Ву Тхи, Березин Д.Б., Базанов М.И. Синтез и редокс-характеристики комплексов железа с трифенилзамещенными корролами в присутствии аргона и кислорода. Журн. неорганич. химии. 2017. Т. 62. № 12. С. 1614-1619.

174. Simkhovich L., Mahammed A., Goldberg I., Gross Z. Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts. Chem. Eur. J. 2001. V. 7. P. 1041–1055.

175. Aviv I., Gross Z. Iron corroles and porphyrins as very efficient and highly selective catalysts for the reactions of α-diazo esters with amines. Synlett. 2006. V. 6. P. 951–953.

176. Aviv I., Gross Z. Iron porphyrins catalyse the synthesis of non-protected amino acid esters from ammonia and diazoacetates. Chem. Commun. 2006. P. 4477–4479.

177. Simkhovich L., Gross Z. Iron(IV) corroles are potent catalysts for aziridination of olefins by chloramine-T. Tetrahedron Lett. 2001. V. 42. P. 8089–8092.

178. Mairena M.A., Diaz-Requejo M.M., Belderrain T.R., Nicasio M.C., Trofimenko S., Perez P.J. Copper-homoscorpionate complexes as very active catalysts for the olefin aziridination reaction. Organometallics. 2004. V. 23. P. 253–256.

179. Jain S.L., Sain B. Metallophthalocyanines as potent catalysts for aziridination of olefins. J. Mol. Catal. A. Chem. 2003. V. 195. P. 283–287.

180. Nakano K., Kobayashi K., Ohkawara T., Imoto H., Nozaki K. Copolymerization of epoxides with carbon dioxide catalyzed by iron-corrole complexes: synthesis of a crystalline copolymer. J. Am. Chem. Soc. 2013. V. 135. P. 8456-8459.

181. Barbe J.-M., Canard G., Brandes S., Jerome F., Dubois G., Guilard R. Metallocorroles as sensing components for gas sensors: remarkable affinity and selectivity of cobalt(III) corroles for CO vs. O2 and N2. Dalton Trans. 2004. P. 1208–1214.

182. Barbe J.-M., Canard G., Brandes S., Guilard R. Selective chemisorption of carbon monoxide by organic-inorganic hybrid materials incorporating cobalt(III) corroles as sensing components. Chem. Eur. J. 2007. V. 13. P. 2118-2129.

183. Kim K., Kim I., Maiti N., Kwon S.J., Bucella D., Egorova O.A., Lee Y.S., Kwak J., Churchill D.G. A study of nerve agent model organophosphonate binding with manganese-A2B-corrole and -A2B2-porphyrin systems. Polyhedron. 2009. V. 28. P. 2418-2430.

184. Mahammed A., Weaver J.J., Gray H.B., Abdelas M., Gross Z. How acidic are corroles and why? Tetrahedron Lett. 2003. V. 44. P. 2077-2079.

185. Li C.-Y., Zhang X.-B., Han Z.-X., Akermark B., Sun L., Shen G.-L., Yu R.-Q. A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalized corrole. Analyst. 2006. V. 133. P. 388-393.

186. Zhang X.-B., Han Z.-X., Fang Z.-H., Shen G.-L., Yu R.-Q. 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal. Chim. Acta. 2006. V. 562. P. 210-215.

187. He C.-L., Ren F.-L., Zhang X.-B., Han Z.-X. A fluorescent chemical sensor for Hg(II) based on a corrole derivative in a PVC matrix. Talanta. 2006. V. 70. P. 364-369.

188. Radecki J., Stenka I., Dolusic E., Dehaen W., Plavec J. Potentiometric discrimination of neutral forms of nitrophenol isomers by liquid membrane electrodes incorporated with corroles. Comb. Chem. High Throughput Screening. 2004. V. 7. P. 375–381.

189. Radecki J., Dehaen W. Nitrogen-containing macrocycles as host molecules for the recognition of undissociated phenol derivatives: mechanism of potenciometric signal generation. Comb. Chem. High Throughput Screening. 2006. V. 9. P. 399-406.

190. Radecki J., Stenka I., Dolusic E., Dehaen W. Corroles as receptors in liquid membrane electrodes and their potentiometric response towards salicylic acid. Electrochim. Acta. 2006. V. 51. P. 2282-2288.

191. Walker D., Chappel S., Mahammed A., Weaver J.J., Brunschwig B.S., Winkler J.R., Gray H.B., Zaban A., Gross Z. Corrole-sensitized TiO2 solar cells. J. Porph. Phthaloc. 2006. V. 10. P. 1259-1262.

192. Wiedau-Pazos M., Goto J.J., Rabizadeh S., Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredsen D.E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996. V. 271. P. 515-518.

193. Yondim M.B.H., Mandel S., Amit T., Bar-Am O., Kupershmidt L., Gross Z., Mahammed A., Saltsman I., Okun Z. Corroles for neuroprotection and neurorescue. US. Pat. 20110098262, 28.04.2011.

194. Teo R.D., Hwang J.Y., Termini J., Gross Z., Gray H.B. Fighting cancer with corroles. Chem. Rev. 2016. V. 117 (4). Р. 2711-2729.

195. Hwang J.Y., Lubow J., Chu D. A mechanistic study of tumor-targeted corrole toxicity. Mol. Pharm. 2011. V. 8. P. 2233-2243.

196. Agostinis P., Berg K., Cengel K.A. Photodynamic therapy of cancer: an update. Cancer J. Clin. 2011. V. 61. P. 250-281.

197. Lim P., Mahammed A., Okun Z., Saltsman I., Gross Z., Gray H.B., Termini J. Differential cytostatic and cytotoxic action of metallocorroles against human cancer cells: potential platforms for anticancer drug development. Chem. Res. Toxicol. 2012. V. 25. P. 400−409.

198. Vakrat-Haglili Y., Weiner L., Brumfeld V. The microenvironment effect on the generation of reactive oxygen species by Pd−bacteriopheophorbide. J. Am. Chem. Soc. 2005. V. 127. P. 6487–6497.

199. Aviezer D., Cotton S., David M., Segev A., Khaselev N., Galili N., Gross Z., Yayon A. Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis. Cancer Res. 2000. V. 60. P. 2973–2980.

200. Sims J. D., Hwang J.Y., Wagner Sh. A corrole nanobiologic elicits tissue-activated MRI contrast enhancementand tumor-targeted toxicity. J. Contr. Release. 2015. V. 217. P. 92-101.

201. Цыб А.Ф., Каплан М.А., Романко Ю.С., Попучиев В.В. Клинические аспекты фотодинамической терапии. Изд-во научной литературы Н.Ф. Бочкаревой. Калуга. 2009. 204 с.

202. Huang L., Dai T., Hamblin M.R. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. In: Photodynamic therapy. Methods and Protocols. Charles J. Gomer Ed. Humana Press. 2010. P. 155-175.

203. Preuss A., Saltsman I., Mahammed A. Photodynamic inactivation of moldi fungi spores by newly developed charged corroles. J. Photochem. Photobiol. B: Biology. 2014. V. 133. P. 39-46.

204. Pohl J., Saltsman I., Mahammed A., Gross Z., Röder B. Inhibition of green algae growth by corrole-based photosensitizers. J. Appl. Microbiol. 2014. V. 118. P. 305-312.

205. Hwang J.Y., Wachsmann-Hogiu S., Ramanujan V.K. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications. Biomed. Opt. Express. 2011. V. 2. N. 2. P. 356- 364.

Войти или Создать
* Забыли пароль?