Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 546.723 Трехвалентное железо
S cel'yu vyyasneniya mehanizma zaryadovoy kompensacii i sposoba razmescheniya legiruyuschih dobavok byli sintezirovany obrazcy βʺ-poliferritov kaliya s shirokim diapazonom mol'noy doli vvodimyh dvuhzaryadnyh kationov. Dlya dannyh obrazcov izmeryali elektronnuyu provodimost', kationnuyu provodimost', provodili rentgenofazovyy analiz (RFA). Vyyavlen mehanizm zaryadovoy kompensacii v β″-poliferrite kaliya pri legirovanii dvuhzaryadnymi ionami kal'ciya, stronciya, magniya, cinka. Mehanizmy zaryadovoy kompensacii razlichayutsya v zavisimosti ot radiusa vvodimogo dvuhzaryadnogo iona. Rezul'taty izmereniya kationnoy provodimosti β″-poliferritov kaliya pokazali, chto krupnye kationy kal'ciya i stronciya snizhayut podvizhnost' ionov kaliya. Takie dobavki ne tol'ko perspektivny dlya povysheniya mehanicheskoy prochnosti i termostabil'nosti granul katalizatora, no i uvelichivayut himicheskuyu ustoychivost' granul kontakta. Korrozionnaya stoykost' granul yavlyaetsya kriticheskim parametrom, opredelyayuschim srok effektivnogo funkcionirovaniya katalizatora. Dannye po elektronnoy provodimosti pozvolyayut zaklyuchit', chto vnedrenie kationov Mg2+, Zn2+ rezko snizhaet elektronnyy obmen v strukture β″-poliferrita kaliya, chto neizbezhno dolzhno privesti k dezaktivacii katalizatora, v to vremya kak iony Sa2+ i Sr2+ ne snizhayut skorost' perenosa elektronov. Ispol'zovanie predlagaemogo podhoda pozvolit intensificirovat' issledovatel'skiy process.
poliferrit, promotor, dvuhzaryadnyy kation, zaryadovaya kompensaciya, elektronnaya provodimost', kationnaya provodimost', zhelezooksidnyy katalizator
1. Joseph Y., Ketteler G., Kuhrs C., Ranke W., Weiss W., Schlögl R. On the Preparation and Composition of Potassium Promoted Iron Oxide Model Catalyst Films // Phys. Chem. Chem. Phys. 2001. Vol. 18, no. 3. R. 4141 4153. DOI:https://doi.org/10.1039/B104263G.
2. Ketteler G., Ranke W., Schlögl R. Potassium-Promoted Iron Oxide Model Catalyst Films for the Dehydrogenation of Ethylbenzene: An Example for Complex Model Systems // Journal of Catalysis. 2002. Vol. 212, no. 1. P. 104-111. URL: https://doi.org/10.1006/jcat.2002.3785
3. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G. Tipy aktivnyh centrov na poverhnosti promotirovannogo zhelezooksidnogo katalizatora // Izv. vuzov. Himiya i him. tehnologiya. 2018. T. 61, № 6. S. 61-68. URL: http://dx.doi.org/10.6060/tcct.20186106.5658
4. Kotarba A., Kruk I., Sojka Z. Energetics of Potassium Loss from Styrene Catalyst Model Components: Reassignment of K Storage and Release Phases // Journal of Catalysis. 2002. Vol. 211, no. 1. P. 265-272. URL: https://doi.org/10.1006/jcat.2002.3725
5. Anikanova L.G., Dvoreckiy N.V. Stabilizaciya schelochnyh promotorov v strukture zhelezooksidnyh katalizatorov degidrirovaniya // Kataliz v promyshlennosti. 2016. T. 16, № 1. S. 29-36. URL: http://dx.doi.org/10.18412/1816-0387-2016-1-29-36
6. Kotarba A., Rożek W., Serafin I., Sojka Z. Reverse Effect of Doping on Stability of Principal Components of Styrene Catalyst: KFeO2 and K2Fe22O34 // Journal of Catalysis. 2007. Vol. 247, no. 2. P. 238-244. URL: https://doi.org/10.1016/j.jcat.2007.02.009
7. Meima G.R., Menon P.G. Catalyst Deactivation Phenomena in Styrene Production // Applied Catalysis A: General. 2001. Vol. 212. P. 239-245. URL: https://ru.scribd.com/document/342010350/Catalyst-Deactivation-Phenomena-in-Styrene
8. Anikanova L.G., Dvoreckiy N.V. Raspredelenie schelochnyh promotorov v strukture zhelezooksidnogo katalizatora degidrirovaniya // Kataliz v promyshlennosti. 2012. № 4. S. 18-23. URL: https://www.catalysis-kalvis.ru/jour/article/view/48/45
9. Abe K., Ohshima M., Kurokawa H., Miura H. Effect of addition of Ce to Fe-K mixed oxide catalyst in dehydrogenation of ethylbenzene // Journal of the Japan Petroleum Institute. 2010. Vol. 53, no. 2. P. 89-94. DOI:https://doi.org/10.1627/jpi.53.89.
10. Abe K., Kano Yu., Ohshima M., Kurokawa H., Miura H. Effect of adding Mo to Fe-Ce-K mixed oxide catalyst on ethylbenzene dehydrogenation // Journal of the Japan Petroleum Institute. 2011. Vol. 54, no. 5. P. 338-343. DOI:https://doi.org/10.1627/jpi.54.338.
11. Nariki S., Ito S., Uchinokura K., Yoneda N. Formation of -, -and -Alumina Type Ferrites in Rb2O Fe2O3 and Cs2O-Fe2O3 Systems and Ionic Conduction of - and - Phases // Journal of the Ceramic Society of Japan. 1988. Vol. 96, no. 1110. P. 186-192. URL: https://doi.org/10.2109/jcersj.96.186
12. Anikanova L.G., Dvoreckiy N.V. Vliyanie dobavok dvuhzaryadnyh ionov na aktivnost' i himicheskuyu ustoychivost' kataliticheski aktivnyh ferritov kaliya // Kataliz v promyshlennosti. 2020. T. 20, № 1. S. 33-39. URL: https://doi.org/10.18412/1816-0387-2020-1-33-39
13. Bugaenko L.T., Ryabyh S.M., Bugaenko A.L. Pochti polnaya sistema srednih ionnyh kristallograficheskih radiusov i ee ispol'zovanie dlya opredeleniya potencialov ionizacii // Vestnik mosk. un-ta. Ser. 2. Himiya. 2008. T. 49, № 6. S. 363-384. URL: https://cyberleninka.ru/article/n/pochti-polnaya-sistema-srednih-ionnyh-kristallograficheskih-radiusov-i-ee-ispolzovanie-dlya-opredeleniya-potentsialov-ionizatsii/viewer
14. Dvoreckaya A.N, Anikanova L.G., Sudzilovskaya T. N., Malysheva Z. G., Dvoreckiy N.V. Formirovanie keramicheskoy struktury promotirovannogo zhelezooksidnogo katalizatora // Ot himii k tehnologii shag za shagom. 2023. T. 4, № 3. S. 8-16. URL: https://doi.org/10.52957/2782-1900-2024-4-3-8-16