employee
Ivanovo, Ivanovo, Russian Federation
UDK 620.193.4 Химическая коррозия. Воздействие различных агрессивных сред
The relationship between the structure of cement stone and the mechanics of its destruction is established by studying the structural and phase changes occurring in cement stone under the influence of a highly aggressive chloride-containing medium. To ensure volumetric hydrophobization of concrete cement stone, it is proposed to introduce calcium stearate in the amount of 0.5 and 0.7 wt. % into the cement mixture at the manufacturing stage. Studies of changes in the physical and mechanical characteristics of cement stone samples were carried out after 6 months of exposure to a environment of a 2% MgCl 2 solution. Of the structural components of the studied brand of Portland cement CEM I 42.5N, low-base calcium hydrosilicates, portlandite and ettringite are more quickly decomposable during concrete corrosion in liquid chloride-containing media, which has a major effect on the change in the strength characteristics of concrete. As a result of exposure to liquid chloride-containing media, the compressive strength of concrete cement stone decreases by 35%. When the calcium stearate hydrophobizer is introduced into the cement mixture, a highly crystalline structure is formed during the hardening of concrete cement stone. In the structure of hydrophobized cement stone, the content of calcium hydrosilicates and ettringite is increased, resulting in an increase in strength. After exposure to an aggressive chloride-containing medium, there is a slight decrease in the intensity of calcium-containing phases, the amount of portlandite in the cement stone structure does not decrease. As a result of chloride corrosion, the strength of hydrophobized concrete decreases by 8%.
volumetric hydrophobization, hydrophobized concrete, chloride corrosion, X-ray structural analysis, concrete strength, structural and phase composition, concrete corrosion
1. Stepanova, V.F. (2014) Durability of concrete. M.: Izd-vo ASV (in Russian).
2. Bazhenov ,Yu.M. (2011) Technology of concrete. M.: Izd-vo ASV (in Russian).
3. Shuldyakov, K.V., Trofimov, B.Ya. & Kramar, L.Ya. (2020) Structural factor of concrete durability, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i rhitektura, 20(1), pp. 46-51. DOI:https://doi.org/10.14529/build200105 (in Russian).
4. Leonovich, S.N. & Prasol, A.V. (2013) Reinforced concrete under conditions of chloride corrosion: deformation and destruction, Stroitel'nye materialy, 5, pp. 94-95 (in Russian).
5. Strokova, V.V., Zhernovsky, I.V., Nelyubova, V.V. & Rykunova, M.D. (2019) Structural Transformations of Cement Stone in Conditions of Development of the Biocenosis of a Poultry Enterprise, Materials Science Forum, 945, pp. 269-275. DOI:https://doi.org/10.4028/www.scientific.net/MSF.945.269.
6. Blikharskyy, Y., Selejdak, J., Kopiika, N. & Vashkevych, R. (2021) Study of Concrete under Combined Action of Aggressive Environment and Long-Term Loading, Materials, 14, p. 6612. DOI:https://doi.org/10.3390/ma14216612.
7. Shcherban’, E.M., Stel’makh, S.A., Beskopylny, A., Mailyan, L.R. & Meskhi, B. (2022) Increasing the Corrosion Resistance and Durability of Geopolymer Concrete Structures of Agricultural Buildings Operating in Specific Conditions of Aggressive Environments of Livestock Buildings, Applied Sciences, 12(3), p. 1655. DOI:https://doi.org/10.3390/app12031655.
8. De Gutiérrez, R.M. (2003) mEffect of supplementary cementing materials on the concrete corrosion control, Revista de Metalurgia, 39, pp. 250-255.
9. Rozental, N.K., Stepanova, V.F. & Chekhny, G.V. (2017) About maximum admissible content of chlorides in concrete, Stroitel'nye materialy, 1-2, pp. 82-85 (in Russian).
10. Smolyago, G.A., Kryuchkov, A.A., Drokin, S.V. & Dronov, A.V. (2014) Investigation of aspects of chloride corrosion of reinforced concrete structures, Vestnik BGTU im. V.G. Shuhova, 2, pp. 22-24 (in Russian).
11. Moskvin, V.M. (1952) Corrosion of concrete. M.: Gosstroyizdat (in Russian).
12. Sun, W., Liu, J., Yan, J. & Dai, Y. (2016) Study on the Influence of Chloride Ions Content on the Sea Sand Concrete Performance, American Journal of Civil Engineering, 4(2), pp. 50-54. DOI:https://doi.org/10.11648/j.ajce.20160402.12.
13. Neville, A. (1995) Chloride attack of reinforced concrete: an overview, Materials and Structures, 28, P. 63. DOIhttps://doi.org/10.1007/BF02473172
14. Zhu, X., Meng, Z., Liu, Y., Xu, L. & Chen, Z. (2018) Entire Process Simulation of Corrosion due to the Ingress of Chloride Ions and CO2 in Concrete, Advances in Materials Science and Engineering, 2018. Article ID 9254865. DOI:https://doi.org/10.1155/2018/9254865.
15. Gilmutdinov, T.Z., Fedorov, P.A. & Latypov, V.M. (2016) Results of researches of the accelerated carbonization of concrete and cement stone in normal temperature and moist conditions of the environment, Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 1, pp. 155-162 (in Russian).
16. Vasiliev, A.A. (2021) Assessment of carbonization and development of its parameters during time crossed concrete for different operating conditions, Vestnik Polockogo gosudarstvennogo universiteta. Seriya F. Stroitel'stvo. Prikladnye nauki, 8, pp. 43-52 (in Russian).
17. Ho, D.W.S. & Lewis, R.K. (1987) Carbonation of concrete and its prediction, Cement and Concrete Research, 17(3), pp. 489-504. DOI:https://doi.org/10.1016/0008-8846(87)90012-3.
18. Singh, N. & Singh, S.P. (2016) Reviewing the Carbonation Resistance of Concrete, Journal of materials and engineering structures, 3, pp. 35-57.
19. Cho, H.-C., Ju, H., Oh, J.-Y., Lee, K.J., Hahm, K.W. & Kim, K.S. (2016) Estimation of Concrete Carbonation Depth Considering Multiple Influencing Factors on the Deterioration of Durability for Reinforced Concrete Structures, Advances in Materials Science and Engineering, 2016. Article ID 4814609. DOI:https://doi.org/10.1155/2016/4814609.
20. Zhang, R., Liu, P., Ma, L., Yang, Z., Chen, H., Zhu, H.X., Xiao, H. & Li, J. (2020) Research on the Corrosion/Permeability/Frost Resistance of Concrete by Experimental and Microscopic Mechanisms Under Different Water–Binder Ratios, International Journal of Concrete Structures and Materials, 14, p. 10. DOI:https://doi.org/10.1186/s40069-019-0382-8.
21. Goncharova, N.I. (2021) The Capillary Permeability of Concrete in Salt Media, ISJ Theoretical & Applied Science, 11(103), pp. 917-921. DOI:https://doi.org/10.15863/TAS.2021.11.103.107.
22. Bamforth, P.B. (1991) The water permeability of concrete and its relationship with strength, Magazine of Concrete Research, 43(157), pp. 233-241. DOI:https://doi.org/10.1680/MACR.1991.43.157.233.
23. Li, X., Xu, Q., Chen, S. (2016) An experimental and numerical study on water permeability of concrete, Construction and Building Materials, 105, pp. 503-510. DOI:https://doi.org/10.1016/j.conbuildmat.2015.12.184.
24. Zhang, Y., Xu, S., Fang, Z., Zhang, J. & Mao, C. (2020) Permeability of Concrete and Correlation with Microstructure Parameters Determined by 1H NMR, Advances in Materials Science and Engineering, 2020. Article ID 4969680. DOI:https://doi.org/10.1155/2020%2F4969680.
25. Villar, M.V., Martín, P.L., Romero, F.J., Gutiérrez-Rodrigo, V. & Barcala, J.M. (2015) Gas and water permeability of concrete, Geological Society, London, Special Publications, 415, pp. 59-73. DOI:https://doi.org/10.1144/SP415.6.
26. Higerovich, M.I. & Bayer, V.E. (1979) Hydrophobic plasticizing additives for cements, mortars and concretes. M: Stroyizdat (in Russian).
27. Dergunov, S.A., Rubtsova, V.N. & Orekhov, S.A. (2009) Hydrophobization of mineral systems, StroyPROFIle, 6 (76), pp. 17-20 (in Russian).
28. Massalimov, I.A., Yanakhmetov, M.R., Chuykin, A.E., Massalimov, B.I., Urakaev, F.H., Uralbekov, B.M. & Burkitbaev, M.M. (2016) Hydrophobization of dense and fine concrete by polysulfide solutions, Nanotekhnologii v stroitel'stve, 8(5), pp. 85-99. DOI:https://doi.org/10.15828/2075-8545- 2016-8-5-85-99 (in Russian).
29. Petrov, N.A., Konsev, G.V. & Davydova, I.N. (2006) Negative and positive consequences of treatment of drilling fluids with liquids GKZH-10 (11, 11H), Neftegazovoe delo, 2, 7 p. [online]. Available at: https://www.studmed.ru/neftegazovoe-delo-2006-01_2e771048ae6.html?ysclid=l7efqu2n64601291978 (in Russian).
30. Cappellesso, V.G., dos Santos Petry, N., Dal Molin, D.C.C. & Masuero, B. (2016) Use of crystalline waterproofing to reduce capillary porosity in concrete, Journal of Building Pathology and Rehabilitation, 1, p. 9. DOI:https://doi.org/10.1007/s41024-016-0012-7.
31. Skutnik, Z., Sobolewski, M. & Koda, E. (2020) An Experimental Assessment of the Water Permeability of Concrete with a Superplasticizer and Admixtures, Materials, 13(24), p. 5624. DOI:https://doi.org/10.3390/ma13245624.
32. Khristoforov, A.I., Khristoforova, I.A. & Eropov, O.L. (2011) Modification of Concrete and Organic Nanoparticles Substances, Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Tekhnika i tekhnologii, 4(6), pp. 704-710 (in Russian).
33. Ramachandran, V.S. (1988) Concrete admixtures. M.: Stroyizdat (in Russian).
34. Dai, J.-G., Akira, Y., Wittmann, F., Yokota, H. & Zhang, P. (2010) Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks, Cement and Concrete Composites, 32, pp. 101-109. DOI: 0.1016/j.cemconcomp.2009.11.001.
35. Moroz, M.N., Petukhov, A.V. & Kalashnikov, V.I. (2014) Fine-grained concrete on carbonate and argil cindery binders, water repellent with zinc stearate, Molodoj uchenyj, 13, pp. 59-61 (in Russian).
36. Dong, B., Wang, F., Abadikhah, H., Hao, L.Y., Xu, X., Khan, S.A., Wang, G. & Agathopoulos, S. (2019) Simple Fabrication of Concrete with Remarkable Self-Cleaning Ability, Robust Superhydrophobicity, Tailored Porosity, and Highly Thermal and Sound Insulation, ACS Applied Materials & Interfaces, 11, pp. 42801-42807. DOI:https://doi.org/10.1021/acsami.9b14929.
37. Fedosov, S.V., Akulova, M.V., Slizneva, T.E., Koksharov, S.A., Akhmadulina, A.S. & Okolova, Yu.A. (2016) Application of mechanic and magnetic activated liquid glass water solutions for fine-grained composites modifying, Izvestiya vysshih uchebnyh zavedenij. Tekhnologiya tekstil'noj promyshlennosti, 6 (366), pp. 58-65 (in Russian).
38. Wong, H.S., Barakat, R., Al Hilali, A., Saleh, M. & Cheeseman, C.R. (2015) Hydrophobic concrete using waste paper sludge ash, Cement and Concrete Research, 70, pp. 9-20. DOI:https://doi.org/10.1016/j.cemconres.2015.01.005.
39. Mora, E., González, G., Romero, P. & Castellón, E. (2019) Control of water absorption in concrete materials by modification with hybrid hydrophobic silica particles, Construction and Building Materials, 221, pp. 210-218. DOI:https://doi.org/10.1016/j.conbuildmat.2019.06.086.
40. Moroz, M.N., Kalashnikov, V.I. & Petukhov, A.V. (2014) Frost resistance of water repellent concrete, Molodoj uchenyj, 19, pp. 222-225 (in Russian).
41. Zhu, Y.-G., Kou, S.-C., Poon, C.-S., Dai, J.-G. & Li, Q.-Y. (2013) Influence of silane-based water repellent on the durability properties of recycled aggregate concrete, Cement and Concrete Composites, 35(1), pp. 32-38. DOI:https://doi.org/10.1016/j.cemconcomp.2012.08.008.
42. Trofimova, I.A. (2017) Analytical review of research phizic-mechanical properties of concretes with volume hydrophobization, Visnik Pridniprovs'koï derzhavnoï akademiï budivnictva ta arhieekturi, 4(231-232), pp. 77-82 (in Russian).
43. Nesvetaev, G.V., Kozlov, A.V. & Filonov, I.A. (2013) The influence of some water-repellent additives on the change in the strength of cement stone, Inzhenernyj vestnik Dona, 2(25), 134 p. (in Russian).
44. Al-Kheetan, M.J., Rahman, M.M. & Chamberlain, D.A. (2018) Development of hydrophobic concrete by adding dual-crystalline admixture at mixing stage, Structural Concrete, 19(5), pp. 1504-1511. DOI:https://doi.org/10.1002/suco.201700254.
45. Butt, Yu.M., Okorokov, S.D., Sychev, M.M. & Timashev, V.V. (1965) Technology of binders. M.: Vysshaya shkola (in Russian).
46. Gjørv, O.E. (2011) Durability of Concrete Structures, Arabian Journal for Science and Engineering, 36, pp. 151-172. DOI:https://doi.org/10.1007/s13369-010-0033-5.
47. Iffat, S. (2015) Relation Between Density and Compressive Strength of Hardened Concrete, Concrete Research Letters, 6(4), pp. 182-189.
48. Nie, Q., Zhou, C., Shu, X., He, Q. & Huang, B. (2014) Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China, Materials, 7(5), pp. 3772-3785. DOI:https://doi.org/10.3390/ma7053772.
49. Konovalova, V.S. (2021) Influence of chloride-containing media on the protective properties of concrete, Lecture Notes in Civil Engineering, 95, pp. 260-265. DOI:https://doi.org/10.1007/978-3-030-54652-6_39.