Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
The study considers the quantum-chemical study of the Diels-Alder heteroreaction of various substituted 3,4-dihydro-2H-thiopyrans. We study the steric and electronic factors influencing the reaction of α,β-unsaturated thiocarbonyl compounds with unsymmetrical dienophiles. We used the methods AM1, B3LYP. The analysis of calculated data for asymmetric dienophiles shows that the regioselectivity of the reaction is subject to the electron factor and can be described by the reaction activation energies, energies and localisation parameters of the boundary orbitals. The calculations are confirmed by the experimental results.
unsaturated thiocarbonyl compounds, Diels-Alder heteroreaction, thiopyrans, quantum-chemical modelling, density functional theory
1. Takayuki Karakasa, Shinichi Motoki. Chemistry of α,β-Unsaturated Thione Dimers. 1. Preparation of α,β Unsaturated Thione Dimers and Thermolysis of These Deimers in the Presence of Acrylonitrile or Acrylamide. J. Org. Chem. 1978. Vol. 43. N 21. P. 4147-4150. DOI:https://doi.org/10.1021/jo00415a036.
2. Takayuki Karakasa, Shinichi Motoki. Chemistry of α,β-Unsaturated Thione Dimers. 2. Reactions of Thiochalcones and 2-Arylidene-1-thiotetralones with Some Olefins and the Parent Ketones of the Thiones. J. Org. Chem. 1979. Vol. 44. N 23. P. 4151-4155. DOI:https://doi.org/10.1021/jo01337a029.
3. Takayuki Karakasa, Hiroshi Yamaguchi, Shinichi Motoki. Chemistry of α,β-Unsaturated Thione Dimers. 3. Reactions of Thiochalcones and 2-Arylidene-1-thiotetralones with Cumulenes Containing a Carbon-Carbon Double Bond. J. Org. Chem. 1980. Vol. 45. N 6. P. 927-930. DOI:https://doi.org/10.1021/jo01294a001.
4. Merkulova E.A., Kolobov A.V., Ovchinnikov K.L. A convenient synthesis of 3,4-dihydro-2H-thiopyran-2,3-dicarboxylic acid derivatives. Rus. Chem. Bull., Int. Ed. 2019. Vol. 68. N 3. P. 606-609. DOI:https://doi.org/10.1007/s11172-019-2462-y.
5. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985. Vol. 107. N 13. P. 3902-3909. DOI:https://doi.org/10.1021/ja00299a024.
6. Dewar M.J.S., Yuan Y.C. AM1 parameters for sulfur. Inorg. Chem. 1990. Vol. 29. N 19. P. 3881-3890. DOI:https://doi.org/10.1021/ic00344a045.
7. Becke A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993. Vol. 98. Iss. 2. P. 1372–1377. DOI:https://doi.org/10.1063/1.464304.
8. Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006. Vol. 8. Iss. 9. P. 1057-1065. DOI: doi.org/10.1039/B515623H.
9. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005. Vol. 7. Iss. 18. P. 3297-3305. DOI:https://doi.org/10.1039/B508541A.
10. Neese F. The ORCA program system. WIREs Comput. Mol. Sci. 2012. Vol. 2. Iss. 1. P. 73-78. DOI:https://doi.org/10.1002/wcms.81.