SYNTHESIS OF PYRIDINE- AND PIPERIDINE-CONTAINING POLYCYCLIC COMPOUNDS BASED ON 2,6-DINITROHALOGENBENZENES
Abstract and keywords
Abstract (English):
This article deals with the study of the nitration of 4-chloro-3-nitrobenzoic acid. The substrate is highly deactivated for SEAr reactions and therefore strict conditions are required (anhydrous KNO3 in concentrated H2SO4 at 165 °C for 10 hours). We have developed methods for the transformation of 4-chloro-3,5-dinitrobenzoic acid and its ester into new polycyclic systems containing pyridine or piperidine fragments by quaternization and reduction reactions.

Keywords:
4-chloro-3-nitrobenzoic acid, N-(2,6-dinitroaryl)pyridinium salts, N-(2,6-dinitroaryl)piperidines, nitration, pyridine quaternisation
Text
Publication text (PDF): Read Download
References

1. Rehman, A., Hussain, M., Rehman, Z., Ali, S., Rauf, A., Nasim, F.H. & Helliwell, M. (2011) Self-assembled pentagonal bipyramidal and skew trapezoidal organotin(IV) complexes of substituted benzoic acids: Their an-tibacterial, antifungal, cytotoxic, insecticidal and urease inhibition activities, Inorg. Chim. Acta, 370, pp. 27-35. DOI:https://doi.org/10.1016/j.ica.2011.01.007 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0020169311000144

2. Gautam, N., Goyal, K., Saini, O., Kumar, A. & Gautam, D.C. (2011) Synthesis and biological activity of substi-tuted 3-fluoro/3-trifluoromethyl 10H-phenothiazines, its ribofuranosides and sulfones, J. Fluor. Chem., 132, pp. 420-426. DOI:https://doi.org/10.1016/j.jfluchem.2011.04.012 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0022113911001230

3. Remes, C., Paun, A., Zarafu, I., Tudose, M., Caproiu, M.T., Ionita, G., Bleotu, C., Matei, L. & Ionita, P. (2012) Chemical and biological evaluation of some new antipyrine derivatives with particular properties, Bioorg. Chem., 41-42, pp. 6-12. DOI:https://doi.org/10.1016/j.bioorg.2011.12.003 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0045206811001064?via%3Dihub

4. Jangid, D.K., Guleria, A., Gautam, D.C., Yadav, H., Mathur, M. & Swami, A.K. (2019) Antimicrobial studies, synthesis and characterization of novel 1-nitro-10H-phenothiazine bearing sulfone/nucleoside moieties, Nu-cleosides, Nucleotides and Nucleic Acids, 38, pp. 533-549. DOI:https://doi.org/10.1080/15257770.2019.1576879 [online]. Availa-ble at: https://www.tandfonline.com/doi/abs/10.1080/15257770.2019.1576879

5. Al-Hiari, M., Qaisi, A.M., El-Abadelah, M.M. & Voelter, W. (2006) Synthesis and Antibacterial Activity of Some Substituted 3-(Aryl)- and 3-(Heteroaryl)indoles, Monatshefte für Chemie, 137, pp. 243–248. DOI:https://doi.org/10.1007/s00706-005-0424-6 [online]. Available at: https://link.springer.com/article/10.1007/s00706-005-0424-6

6. Gautam, N., Gupta, S., Ajmera, N. & Gautam, D.C. (2012) Synthesis, Characterization, and Biological Evalua-tion of 10H-Phenothiazines, Their Sulfones and Ribofuranosides, J. Heterocycl. Chem., 49, pp. 710-715. DOI: https:https://doi.org/10.1002/jhet.771 [online]. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/jhet.771

7. Zhang, B., Pang, L., Nautiyal, M., Graef, S.D., Gadakh, B., Lescrinier, E., Rozenski, J., Strelkov, S.V., Weeks, S.D. & Aerschot, A.V. (2020) Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-HydroxymethylBenzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors, Mole-cules, 25, pp. 1-24. DOI:https://doi.org/10.3390/molecules25204751 [online]. Available at: https://www.mdpi.com/1420-3049/25/20/4751

8. Sykes, B.M., Atwell, G.J., Hogg, A., Wilson, W.R., O’Connor, C.J. & Denny, W.A. (1999) N-Substituted 2-(2,6-Dinitrophenylamino)propanamides: Novel Prodrugs That Release a Primary Amine via Nitroreduction and Intramolecular Cyclization, J. Med. Chem., 42, pp. 346-355. DOI:https://doi.org/10.1021/jm960783s [online]. Available at: https://pubs.acs.org/doi/10.1021/jm960783s

9. Baguley, T.D., Nairn, A.C., Lombroso, P.J. & Ellman, J.A. (2015) Synthesis of benzopentathiepin analogs and their evaluation as inhibitors of the phosphatase STEP, Bioorg. Med. Chem. Lett., 25, pp. 1044-1046. DOI:https://doi.org/10.1016/j.bmcl.2015.01.020 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X15000323?via%3Dihub

10. Molteni, V., He, X., Nabakka, J., Yang, K., Kreusch, A., Gordon, P., Bursulaya, B., Warner, I., Shin, T., Bio-rac, T., Ryder, N.S., Goldberg, R., Doughtyc, J. & He, Y. (2004) Identification of novel potent bicyclic peptide deformylase inhibitors, Bioorg. Med. Chem. Lett., 14, pp. 1477–1481. DOI:https://doi.org/10.1016/j.bmcl.2004.01.014 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X04000502?via%3Dihub

11. Kojima, T., Mochizuki,M., Takai, T., Hoashi, Y., Morimoto, S., Seto, M., Nakamura, M., Kobayashi, K., Sa-ko, Y., Tanaka, M., Kanzaki, N., Kosugi, Y., Yano, T. & Aso, K. (2018) Discovery of 1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazoles as novel class of corticotropin releasing factor 1 receptor antago-nists, Bioorg. Med. Chem., 26, pp. 2229-2250. DOI:https://doi.org/10.1016/j.bmc.2018.01.020 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0968089617323374?via%3Dihub

12. Mochizuki, M., Kori, M., Kobayashi, K., Yano, T., Sako, Y., Tanaka, M., Kanzaki, N., Gyorkos, A.C., Cor-rette, C.P., Cho, S.Y., Pratt, S.A. & Aso, K. (2016) Design and synthesis of benzimidazoles as novel corticotro-pin-releasing factor 1 receptor antagonists, J. Med. Chem., 59(6), pp. 2551–2566. DOI:https://doi.org/10.1021/acs.jmedchem.5b01715 [online]. Available at: https://pubs.acs.org/doi/10.1021/acs.jmedchem.5b01715

13. Zheng, Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., Kouhen, O.F.E., Chang, R., Uchic, M.E., Miller, L. , Nakane, M., Lehto, S.G., Honore, M.P., Moreland, R.B., Brioni, J.D. & Stewart, A.O. (2005) Struc-ture-Activity Relationship of Triazafluorenone Derivatives as Potent and Selective mGluR1 Antagonists, J. Med. Chem., 48, pp. 7374-7388. DOI:https://doi.org/10.1021/jm0504407 [online]. Available at: https://pubs.acs.org/doi/10.1021/jm0504407

14. Filimonov, S.I., Makarova, E.S., Chirkova, J.V. & Kabanova, M.V. (2022) Diastereomeric composition of the reaction of the formation of hexahydro-5h-chromeno[4,3-d]pyrimidin-5-ones, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 131-138. DOI:https://doi.org/10.52957/27821900_2022_01_131 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1.

15. Kotov, A.D., Kunichkina, A.S. & Peoskurina, I.K. (2022) Transformation of 5-halogen-3-aryl-2,1-benzisooxazoles into quinazolines, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-4

16. Begunov, R.S. & Sokolov, A.A. (2022) One-pot Reduction and Halogenation of N-(2,4-dinitrophenyl)piperidine, From chemistry towards technology. Step-by-step, 3(2), pp. 92-97. DOI:https://doi.org/10.52957/27821900_2022_02_92 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no2.

17. Vitaku, E., Smith, D.T., Njardarson, J.T. (2014) Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals, J. Med. Chem., 57( 24), pp. 10257-10274. DOI:https://doi.org/10.1021/jm501100b [online]. Available at: https://pubs.acs.org/doi/10.1021/jm501100b

18. Van Duin, H. (1954) The separation and identification of normal aliphatic alcohols, Recueil des Travaux Chimiques des Pays-Bas., 73, pp. 68-77. DOI:https://doi.org/10.1002/recl.19540730111 [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/recl.19540730111.

Login or Create
* Forgot password?