employee
Ivanovo, Ivanovo, Russian Federation
UDK 620.193.46 Воздействие прочих неорганических веществ
To increase the durability of reinforced concrete products it is important to determine the period of termination of the steel reinforcement protection with concrete coating, and develop ways to increase the corrosion resistance of concrete in environments with a high degree of corrosion. We enter 0.3-1.3 wt. % of calcium stearate into the cement mixture at the stage of sample preparation to ensure volumetric hydrophobization of cement brick. Also we treated the «cement brick – steel reinforcement» system with 2% MgCl2 solution. The sample of cement brick do not containing calcium stearate has a reinforcement passivity violation after 6 months in a highly corrosive chloride-containing medium. The sample of cement brick containing calcium stearate have not changed during 2 years of testing. Small values of the corrosion rate indicators show the absence of corrosion damage of steel reinforcement in cement brick. However, corrosive particles accumulating at the surface of the reinforcement over time intensify the corrosion of steel. In cement concrete of waterproof grades W4-W16 corrosion of steel reinforcement proceeds 2-5 times slower compared to reinforcement in concrete without the addition of a hydrophobizer. Indeed, corrosion of steel in hydrophobized concrete starts later, as it takes considerably longer to reach the chloride ion limit at the surface of the reinforcement.
hydrophobizing additive, hydrophobized concrete, chloride induced corrosion, reinforcement corrosion, corrosion rate
1. Stepanova, V.F. (2014) Durability of concrete. M.: ASV Publishing House (in Russian).
2. Alekseev, S.N. (1968) Corrosion and protection of reinforcement in concrete. M.: Stroyizdat (in Russian).
3. Moskvin, V.M., Ivanov, F.M., Alekseev, S.N. & Guzeev, E.A. (1980) Corrosion of concrete and reinforced concrete, methods of their protection. M.: Stroyizdat (in Russian).
4. Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E. & Polder, R.B. (2013) Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley‐VCH Verlag GmbH & Co.
5. Asamoto, S., Sato, J., Okazaki, S., Chun, P-j., Sahamitmongkol, R. & Nguyen G.H. (2021) The Cover Depth Effect on Corrosion-Induced Deterioration of Reinforced Concrete Focusing on Water Penetration: Field Survey and Laboratory Study, Materials, 14(13), pp. 3478. DOI:https://doi.org/10.3390/ma14133478.
6. Bazhenov, Yu.M. (2011) Technology of concrete. M.: Izd-vo ASV (in Russian).
7. Claisse, P.A. (2020) Transport Properties of Concrete: Modelling the Durability of Structures. Second Edition. Woodhead Publishing.
8. Ramachandran, V.S. (1988) Concrete admixtures. M.: Stroyizdat (in Russian).
9. Bogdanov, R.R., Ibragimov, R.A., Izotov, V.S. (2013) Studies of the influence of domestic water-repelling additions on the basic properties of cement paste and mortar, Izvestiya Kazanskogo gosudarstvennogo arxitekturno-stroitel`nogo universiteta, (4), pp. 207-210 (in Russian).
10. Suzdaltsev, O.V., Kalashnikov, V.I., Moroz, M.N. & Erofeeva, I.V. (2015) Influence of powder hydrophobizer on strength and water absorption of architectural and decorative concretes of new generation, Molodoj uchenyj, (5), pp. 186-189 (in Russian).
11. Tuskaeva, Z. & Karyaev, S. (2020) Influence of various additives on properties of concrete, E3S Web of Conferences, 164, pp. 14007. DOI:https://doi.org/10.1051/e3sconf/202016414007.
12. Yukhnevsky P.I. (2013) The influence of the chemical nature of additives on the properties of concrete. Minsk: BNTU (in Russian).
13. SafarovK.B. (2015) The Use of Reactive Aggregates for Producing Concretes Resistant to Aggressive Media, Stroitel'nye materialy, (7), pp. 17-20 (in Russian).
14. Cappellesso, V.G., dos Santos Petry, N., Dal Molin, D.C.C. & Masuero, A.B. (2016) Use of crystalline waterproofing to reduce capillary porosity in concrete, Journal of Building Pathology and Rehabilitation, 1, article no. 9. DOI:https://doi.org/10.1007/s41024-016-0012-7.
15. Gross, S., Meyer, H.W. & Heersche, P.H. (2019) Calcined Clay as a Component of Cement and Concrete, Cement i ego primenenie, (4), pp. 102-107 (in Russian).
16. Jaskulski, R., Jóźwiak-Niedźwiedzka, D. & Yakymechko, Y. (2020) Calcined Clay as Supplementary Cementitious Material, Materials, 13(21), pp. 4734. DOI:https://doi.org/10.3390/ma13214734.
17. Flores-Vivian, I., Pradoto, R., Moini, M., Kozhukhova, M.I., Potapov, V.V. & Sobolev, K.G. (2018) The effect of SiO2 nanoparticles on performance of cement-based materials, Vestnik BGTU im. V.G. Shukhova, (11), pp. 6-16. DOI:https://doi.org/10.12737/artide_5bf7e352d68e96.02791207 (in Russian).
18. Geng, Y., Li, S., Hou, D., Chen, X. & Jin, Z. (2020) Effect of SiO2 Sol/Silane Emulsion in Reducing Water and Chloride Ion Penetration in Concrete, Coatings, 10(7), pp. 682. DOI:https://doi.org/10.3390/coatings10070682.
19. Breilly, D., Fadlallah, S., Froidevaux, V., Colas, A. & Allais, F. (2021) Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete, Construction and Building Materials, 301, p. 124065. DOI:https://doi.org/10.1016/j.conbuildmat.2021.124065
20. Dvorkin, L.I. (2020) The influence of polyfunctional modifier additives on properties of cement-ash fine-grained concrete, Magazine of Civil Engineering, 93(1), pp. 121-133. DOIhttps://doi.org/10.18720/MCE.93.10
21. Qin, Y.L., Bai, M.X., Zhang, Z.M. & Yang, D.J. (2012) Adsorption Behavior of Naphthalene Sulfonate Formaldehyde Condensate with Different Molecular Weights on the Cement Particle Surface, Advanced Materials Research, 557-559, pp. 870-876. DOI:https://doi.org/10.4028/www.scientific.net/AMR.557-559.870.
22. Khudhair, M.H.R., Elyoubi, M.S. & Elharfi, A. (2018) Study of the influence of water reducing and setting retarder admixtures of polycarboxylate «superplasticizers» on physical and mechanical properties of mortar and concrete, Journal of Materials and Environmental Sciences, 9(1), pp. 56-65. DOI:https://doi.org/10.26872/jmes.2018.9.1.7.
23. Ramachandran, V.S., Lowery, M.S. & Malhotra, V.M. (1995) Behaviour of ASTM Type V cement hydrated in the presence of sulfonated melamine formaldehyde, Materials and Structures, 28, pp. 133-138. DOI:https://doi.org/10.1007/BF02473220.
24. Bogdanov, R.R., Pashaev, A.V., Zhuravlev, M.V. & Kalimullin, A.A. (2018) Superplasticizer based on polycarboxylate ether and polyaryl and their influence on the physico-technical properties of cement compositions, Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, (4), pp. 265-273 (in Russian).
25. Barabanshchikov, Yu.G. & Komarinski, M.V. (2014) Superplasticized technological properties of concrete mixtures, Stroitel'stvo unikal'nykh zdanij i sooruzhenij, (6), pp. 58-69 (in Russian).
26. Paktiawal, A. & Alam, M. (2021) Effect of polycarboxylate ether-based superplasticizer dosage on fresh and hardened properties of cement concrete, IOP Conference Series: Materials Science and Engineering, 1166, p. 012013. DOI:https://doi.org/10.1088/1757-899X/1166/1/012013.
27. Higerovich, M.I. & Bayer, V.E. (1979) Hydrophobic plasticizing additives for cements, mortars and concretes. Moscow: Strojizdat (in Russian).
28. Misnikov, O.S. & Chertkova, E.Yu. (2014) Hydrophobic modification of mineral binders by additives produced from peat, Eurasian Mining., (1), pp. 63-68.
29. Grechuhin, V.A. (2015) Concrete repair mortars with the additive from the secondary products of mineral oils, Vestnik Polotskogo gosuniversiteta. Ser. F. Stroitel'stvo. Prikladnye nauki, (8), pp. 120-126 (in Russian).
30. Badikova, A.D., Sakhibgareev, S.R., Fedina, R.A., Rakhimov, M.N. & Tsadkin, M.A. (2020) Effective mineral additive on the basis of wastes of petrochemical plants for a concrete structural mix, Nanotechnologies in Construction, 12(1), pp. 34-40. DOI:https://doi.org/10.15828/2075-8545-2020-12-1-34-40 [online]. Available at: http://www.nanobuild.ru/en_EN/journal/Nanobuild-1-2020/34-40.pdf
31. Albayrak, A.T., Yasar, M., Gurkaynak, M.A. & Gurgey, I. (2005) Investigation of the effects of fatty acids on the compressive strength of the concrete and the grindability of the cement, Cement and Concrete Research, 35(2), pp. 400-404. DOI:https://doi.org/10.1016/j.cemconres.2004.07.031.
32. Moroz, M.N., Kalashnikov, V.I., Khudyakov, V.A. & Vasilik, P.G. (2009) Water-resistant fine-grained concrete hydrophobized with calcium stearate nanoparticles, Stroitel'nye materialy, (8), pp. 55-59 (in Russian).
33. Nemati Chari, M., Naseroleslami, R. & Shekarchi, M. (2019) The impact of calcium stearate on characteristics of concrete, Asian Journal of Civil Engineering, 20, pp. 1007-1020. DOI:https://doi.org/10.1007/s42107-019-00161-x.
34. Kalashnikov, V.I., Moroz, M.N., Nesterov, V.Yu., Hvastunov, V.L., Makridin, N.I. & Vasilik, P.G. (2016) Organometallic hydrophobizers for mineral-slag binders, Stroitel'nye materialy, (10), pp. 38-39 (in Russian).
35. Lanzón, M., Martínez, E., Mestre, M. & Madrid, J.A. (2017) Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain, Construction and Building Materials, 139, pp. 114-122. DOI:https://doi.org/10.1016/j.conbuildmat.2017.02.055.
36. Cellat, K., Tezcan, F., Kardaş, G. & Paksoy, H. (2019) Comprehensive investigation of butyl stearate as a multifunctional smart concrete additive for energy-efficient buildings, International Journal of Energy Research, 43(13), pp. 7146-7158. DOI:https://doi.org/10.1002/er.4740.
37. Kurdi, A., Almoatham, N., Mirza, M., Ballweg, T. & Alkahlan, B. (2021) Potential Phase Change Materials in Building Wall Construction – A Review, Materials, 14(18), p. 5328. DOI:https://doi.org/10.3390/ma14185328
38. Liu, X., Song, X., Wang, Z., Xia, C., Li, T., Li, X., Xu, Q., Cui, S. & Qian, S. (2021) Polymer for Internal Hydrophobization of Cement-Based Materials: Design, Synthesis, and Properties, Polymers, 13(18), p. 3069. DOI: 10.3390/ polym13183069.
39. Krisman, A.E. (2017) Modification of the concrete mixture with acrylic dispersion, its effect on the performance characteristics of concrete, NovaInfo.ru, (66), pp. 22-32 (in Russian).
40. Sharma, N. & Sharma, P. (2021) Effect of hydrophobic agent in cement and concrete: A Review, IOP Conference Series: Materials Science and Engineering, 1116, p. 012175. DOI:https://doi.org/10.1088/1757-899X/1116/1/012175.
41. Solovyev, V.G., Eremin, A.V., Eliseev, D.M. & Buryanov, A.F. (2017) Improvement of water resistance of gypsum binder by paraffin emulsion, Stroitel'nye materialy, (1-2), pp. 45-49 (in Russian).
42. Butakova, M.D., Mikhailov, A.V. & Saribekyan, S.S. (2017) Influence of Silicon-Containing Additives on the Property of the Watertightness of Concrete Samples. Bulletin of the South Ural State University. Ser. Construction Engineering and Architecture, 17(2), pp. 34-41 (in Russian). DOI:https://doi.org/10.14529/build170205.
43. Zhang, P., Shang, H., Hou, D., Guo, S. & Zhao, T. (2017) The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials, Advances in Materials Science and Engineering, V. 2017, article ID 8260103. DOI:https://doi.org/10.1155/2017/8260103.
44. Khristoforov, A.I., Khristoforova, I.A. & Eropov, O.L. (2011) Modification of Concrete and Organic Nanoparticles Substances, Zhurnal Sibirskogo federal`nogo universiteta. Texnika i texnologii, 4(6), pp. 704-710 (in Russian).
45. Grabowska, K. & Koniorczyk, M. (2019) Internal hydrophobization of cement mortar by addition of siloxanes, MATEC Web of Conferences, 282, p. 02030. DOI:https://doi.org/10.1051/matecconf/201928202030 [online]. Available at: https://www.matecconferences.org/articles-/matecconf/pdf/2019/31/matecconf_cesbp2019_02030.pdf
46. Maryoto, A., Setijadi, R., Widyaningrum, A. & Waluyo, S. (2020) Drying Shrinkage of Concrete Containing Calcium Stearate, (Ca(C18H35O2)2), with Ordinary Portland Cement (OPC) as a Binder: Experimental and Modelling Studies, Molecules, 25(21), p. 4880. DOI:https://doi.org/10.3390/molecules25214880.
47. Azad, A., Mousavi, S.F., Karami, H. & Farzin, S. (2019) Application of Talc as an Eco-Friendly Additive to Improve the Structural Behavior of Porous Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43, (Suppl. 1), pp. 443-453. DOI:https://doi.org/10.1007/s40996-018-0177-1.
48. Lima-Guerra, D.J., Mello, I., Resende, R. & Silva, R. (2014) Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing, International Journal of Concrete Structures and Materials, 8, pp. 15-26. DOI:https://doi.org/10.1007/s40069-013-0066-8.
49. Raheem, S.A., Saheb, M.A., Moula, H.H., Maula, B.H., Alshreefi, R.A. & Bahnam, Q.M. (2019) Improve Light Weight Concrete Characteristics by Adding Paraffin Wax as Moisture Proof, Materials Science Forum, 972, pp. 16-25. DOI:https://doi.org/10.4028/www.scientific.net/msf.972.16.
50. Pyzhov, A.S. (2010) Technology of production and use of road rolled concrete with disperse bitumen, Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, (3), pp. 239-251 (in Russian).
51. Anikina, N.A., Smirnov, V.F., Smirnova, O.N. & Zaharova, E.A. (2018) Protection of construction materials based on acrylates from biodeterioration, Magazine of Civil Engineering, 81(5), pp. 116-124. DOI:https://doi.org/10.18720/MCE.81.12.
52. Yao, S.Y. & Ge, Y. (2012) Effect of Styrene Butadiene Rubber Latex on Mortar and Concrete Properties, Advanced Engineering Forum, 5, pp. 283-288. DOI:https://doi.org/10.4028/www.scientific.net/aef.5.283.
53. Abdo, Sh., Galishnikova, V.V. & Fawzy, A.M. (2021) Properties of recycled aggregate pervious concrete modified with Styrene Butadiene Rubber Latex, Magazine of Civil Engineering, 108(8), article no. 10805. DOI:https://doi.org/10.34910/MCE.108.5.
54. Kim, M.J., Park, E.S., Hwang, W.I. & Cho, W.J. (2022) Effect of FNS Incorporation on the Properties of Ternary Blended Cement Containing Blast Furnace Slag and Fly Ash, Advances in Materials Science and Engineering, V. 2022, article ID 1047648. DOI:https://doi.org/10.1155/2022/1047648.
55. Sychova, A.M., Svatovskaya, L.B., Starchukov, D.S., Soloviova, V.Y. & Gravit, M.V. (2018) The improving of the concrete quality in a monolithic clip, Magazine of Civil Engineering, 80(4), pp. 3-14. DOI:https://doi.org/10.18720/MCE.80.1.
56. Cardenas, H., Kupwade-Patil, K., Eklund, S. (2011) Corrosion Mitigation in Mature Reinforced Concrete Using Nanoscale Pozzolan Deposition, Journal of Materials in Civil Engineering, 23(6), pp. 752-760. DOI:https://doi.org/10.1061/(ASCE)MT.1943-5533.0000194/
57. de Souza Oliveira, A., Gomes, O.F.M., Ferrara, L., Fairbairn, E.M.R. & Filho, R.D.T. (2021) An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators, Journal of Building Engineering, 41, pp. 102400. DOI:https://doi.org/10.1016/j.jobe.2021.102400.
58. Fedosov, S.V., Rumyantseva, V.E., Konovalova, V.S. & Karavaev, I.V. (2018) Rate of penetration of chloride ions to the surface of steel reinforcement in hydrophobized concretes, Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie, (4), pp. 93-99 (in Russian).
59. Basheer, P.A.M., Basheer, L., Cleland, D.J. & Long, A.E. (1997) Surface Treatments for Concrete: Assessment Methods and Reported Performance. Construction and Building Materials, 11(7-8), pp. 413-429. DOI:https://doi.org/10.1016/S0950-0618(97)00019-6.
60. Fedosov, S.V., Rumyantseva, V.E., Konovalova, V.S. & Karavaev, I.V. (2017) Liquid corrosion of concrete in the environment with various degree of aggressiveness, Vestnik grazhdanskikh inzhenerov, (4), pp. 113-118. DOI:https://doi.org/10.23968/1999-5571-2017-14-4-113-118 (in Russian).
61. Babkov, V.V., Gafurova, E.A., Rezvov, O.A. & Mokhov, A.V. (2012) The problems of the occurrence of efflorescence on the surface of buildings’ exterior walls made of vibropressed concrete blocks and the methods of blocking these processes, Inzhenerno-stroitel'nyj zhurnal, (7), pp. 14-22. DOI:https://doi.org/10.5862/MCE.33.2 (in Russian).
62. Zhu, H., Wang, P. & Zhang, G. (2014) Effect of hydrophobic agent on efflorescence of portland cement-based decorative mortar, Jianzhu Cailiao Xuebao/Journal of Building Materials, 17(5), pp. 882-886, 900. DOI:https://doi.org/10.3969/j.issn.1007-9629.2014.05.021.
63. Tuutti, K. (1982) Corrosion of Steel in Concrete. Stockholm: Swedish Cement and Concrete Research Institute. DOI:https://doi.org/10.4324/9780203475287.ch2.