Vladimir, Vladimir, Russian Federation
Vladimir, Vladimir, Russian Federation
The article classifies construction wastes and assesses the possibility of using them to produce new construction materials. The authors present examples of obtaining composites on the basis of glass and brick waste, reinforced concrete debris, gypsum plasterboard, drywall, wood, asbestos cement, polyvinyl chloride, and cross-linked polyethylene. The analysis of literature sources reveals the manufacturing of building materials and products on the basis of construction waste. Their using is a promising direction of production development, allowing us to reduce costs, conserve natural resources, and minimize the negative impact on the environment. The wastes of cross-linked polyethylene (insulation of cables and pipelines) belong to the wastes, recycling of which is poorly studied or complicated. The article also provides the results of research aimed at the synthesis of oil-resistant concrete on the basis of cross-linked polyethylene waste and crushed bricks, indicating the prospects of using cross-linked polyethylene as an aggregate for the production of concrete.
recycling, construction waste, crushed bricks, reinforced concrete debris, wood, drywall, polyethylene
1. Sokolov, l.I. (2021) Classification and recycling of construction waste, Upravlenie tekhnosferoy, 4(1), pp. 39-49. DOIhttps://doi.org/10.34828/UdSU.2021.40.44.008 [online]. Available at: https://technosphereing.ru (in Russian).
2. Gamayunova, O.S. & Slobodyanyuk, T.R. (2022) Recycling of construction waste, Vysokie tekhnologii v stroitel'nom komplekse, (1), pp. 18-26 (in Russian).
3. Oleynik, S.P. (2016) Construction waste during the reconstruction of buildings and structures, Internet-zhurnal «Otkhody i resursy», 3(2). DOI:https://doi.org/10.15862/03RRO116 [online]. Available at: http://resources.today/issues/vol3-no2.html (in Russian).
4. Lunev, G.G. & Prokhotskiy, Yu.M. (2020) Recycling of secondary construction resources. Problems and prospects of the industry on the example of Moscow, Vserossiisckiy economicheskiy zhurnal EKO, (4), pp. 166-192 (in Russian). DOI:https://doi.org/10.30680/ECO.
5. Gukov, S.U. (2018) Construction waste during the reconstruction of buildings and structures, Proektirovanie i stroitel´stvo: sbornik nauchnykh trudov vtoroy Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh, aspirantov, magistrov i bakalavrov. (Kursk, 04-05 iyunya 2018 goda). Kursk: Yugo-zapadniy gosudarstvenniy universitet, pp. 61-63 (in Russian).
6. Murtazaev, S-A.U., Khadisov, V.H. & Khadzhiev, M.R. (2011) The use of industrial waste and ceramic brick scrap for the preparation of lightweight concrete, Trudy groznenskogo gosudarstvennogo neftyanogo tekhnicheskogo universiteta im. akademika M.D. Millionshchikova, (11), pp. 157-162 (in Russian).
7. Khadzhiev, M.R. (2014) Concrete composites on aggregates from ceramic brick scrap, Evraziiskiy soyuz uchenykh, (5), pp. 37-40 DOI:https://doi.org/10.31618/ESU.2413-9335 (in Russian).
8. Khadzhiev, M.R. (2015) Ceramic concrete based on secondary aggregates from brick scrap for small-piece wall products. PhD. Groznyj (in Russian).
9. Khadzhiev, M.R. & Khadisov, V.H. (2014) Small-piece wall products made of lightweight ceramic concrete for enclosing structures of buildings and structures, Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, (4), pp. 137-142 (in Russian).
10. Batdalov, M.M. & Khadisov, V.H. (2011) The use of brick scrap for the production of building composites, Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, (23), pp. 102-105 (in Russian).
11. Murtazaev, S-A.U., Sajdumov, M.S., Khadzhiev, M.R. & Khadisov, V.H. (2014) Cellular ceramic concrete based on aggregates from secondary raw materials, Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 3 (34), pp. 74-81 (in Russian).
12. Sadek, D.M. (2012) Phisico-mechanical properties of solid cement bricks containing recycled aggregates, Journal of advanced research, (3), pp. 253-260.
13. Debieb, F. & Kenai, S. (2008) The use of coarse and fine crushed bricks as aggregate in concrete, Construction and building materials, 22(5), pp. 886-893. DOI:https://doi.org/10.1016/j.conbuildmat. 2006.12.013.
14. Romanenko, I.I., Petrovnina, I.N., Elichev, K.A. & Romanenko, M.I. (2022) Awakening of hydraulic activity of fillers and aggregates from clay bricks scrap, Inzhenerniy vestnik Dona, 11(95), pp. 563-572 (in Russian).
15. Aliabdo, A.A. Abd-Elmoati, M. & Hassan, H.H. (2014) The use of crushed clay bricks in the concrete industry, Alexandria Engineering Journal, 53(1), pp. 151-168. DOI:https://doi.org/10.1016/j.aej.2013.12.003.
16. Ge, Z., Gao, Z., Sun, R. & Zheng, L. (2012) Mix design of concrete with recycled clay-brick-powder using the orthogonal design method, Construction and building materials, (31), pp. 289-293. DOI:https://doi.org/10.1016/j.conbuildmat.2012.01.002.
17. Pulyaev, S.M. (2005) Concrete on aggregates from concrete scrap for precast concrete products. PhD. Moscow (in Russian).
18. Uspanova, A.S., Islamov, A.A., Kurazov, M.S., Inorkaev, I.S-A. & Vahazhi, H-M.M. (2017) Construction plaster mixtures based on a fine fraction of the product of crushing of brick scrap and production waste of bricks, Fundamental´nye osnovy stroitel´nogo materialovedeniya. Sbornik dokladov mezhdunarodnogo onlajn kongressa. (Belgorod, 06-11 oktyabrya 2017 goda). Belgorod: Belgorodskiy gosudarstvenniy tekhnologicheskiy universitet im. V.G. Shuhova, pp. 906-913 (in Russian).
19. Silva, J., Brito de J. & Veiga, R. (2009) Incorporation of fine ceramics in mortars, Construction and Building Materials, (23), pp. 556-564. DOIhttps://doi.org/10.1016/j.conbuildmat.2007.10.014.
20. Fomenko, A.I., Gryzlov, V.S. & Kaptyushina, A.G. (2016) Ceramic brick waste as an effective component of building composites, Sovremennye naukoemkie tekhnologii, (2), pp. 260-264 (in Russian).
21. Murtazaev, S-A.U. Ismailova, Z.Kh., Khasiev, A.A. & Nakhaev, M.R. (2012) Disposal of screening of concrete scrap, Ekologiya i promyshlennost´ Rossii, (8), pp. 26-28 (in Russian).
22. Efimenko, A.Z. (2014) Concrete waste – raw materials for the production of efficient building materials, Materialy. Tekhnologii betonov, (2), pp. 17-21 (in Russian).
23. Magsumov, A.N., Sharipyanov, N.M. & Krasinikova, N.M. (2018) The use of concrete scrap as a coarse aggregate for the production of concrete mixtures, Simvol nauki: mezhdunarodniy nauchniy zhurnal, (6), pp. 29 33 (in Russian).
24. Chursin, S.I. & Pozdnyakov, A.V. (2018) Heavy concretes using modified fine aggregate from concrete scrap, Vestnik Donbasskoy nacionalnoy akademii stroite´lstva i arkhitektury, 4(2), pp. 209-215 (in Russian).
25. Akhmed, A.A., Fedyuk, R.S., Liseytsev, Yu.L., Timokhina, R.A. & Murali, G. (2020) Use of Iraq concrete scrap as filler and aggregate of heavyweight and lightweight concrete, Stroitel'nye materialy i izdeliya, (3), pp. 28-39 (in Russian).
26. Bumanis, G., Zorica, J., Korjakins, A. & Bajare, D. (2022) Processing of Gypsum Construction and Demolition Waste and Properties of Secondary Gypsum Binder, Recycling, 7(30). DOI:https://doi.org/10.3390/recycling7030030.
27. Hansen, S. & Perdam, S. (2019) Application of Recycled Gypsum Wallboards in Cement Mortar, Conference: 7th International Conference on Engineering Mechanics and Materials. CSCE Annual Conference At: Laval, QC, Canada.
28. Kislitsyna, S.N. & Shitova, I.U. (2016) Methods of processing waste from the woodworking industry. Penza: PGUAS (in Russian).
29. GOST 19222-2019. Arbolit and its products. Specifications (in Russian).
30. GOST 26816-2016. Cement-chipboard plates. Technical conditions (in Russian).
31. Min´ko, N.I. & Kalatozi, V.V. (2018) The use of cullet in the technology of materials for construction purposes, Vestik BGTU im. V.G. Shuhova, (1), pp. 82-88 (in Russian).
32. Melkonyan, R.G. & Vlasova, S.G. (2013) Environmental and economic problems of using cullet in glass production. Ekaterinburg: Izdatel´stvo Ural´skogo universiteta (in Russian).
33. Bessmertnyj, V.S., Zhernovoy, F.E., Dorokhova, E.S., Izotova, I.A. & Gokova, E.N. (2016) An effective material for green construction based on secondary glass scrap, Intellektual´nye stroitel´nye kompozity dlya zelenogo stroitel´stva, pp. 111-116 (in Russian).
34. The use of cullet as a concrete aggregate [online]. Available at: https://www.newchemistry.ru/letter.php?n_-id=6702&cat_id=24&page_id=2 (in Russian).
35. Belokopytova, A.S. (2006) Development of cullet recycling processes by creating composite materials. PhD. Moscow (in Russian).
36. Grigorova, Y.A. (2014) Secondary use of cullet in the production of thermal insulation materials, Sovremennye nauchnye issledovaniya i innovatsii, (8) [online]. Available at: https://web.snauka.ru/issues/2014/08/37026 (in Russian).
37. Bagautdinov, A.A. (2004) Methods for improving the physical and mechanical properties of materials and products based on asbestos cement waste, Vestnik UlGTU, (2), pp. 76-78 (in Russian).
38. Bagautdinov, A.A. (1994). Wall construction products based on asbestos cement production waste. PhD. Moscow (in Russian).
39. Rosprirodnadzor. Federal Classification Catalog of Waste [online]. Available at: https://rpn.gov.ru/fkko/45592111604/ (accessed 13.07.2023) (in Russian).
40. Kuligina, T.N. (2007) Development of building materials based on asbestos cement production waste. PhD. Ivanovo (in Russian).
41. Vasileva, L.V. & Gubskaya, A.G. (2012) The possibility of using asbestos cement waste for the production of dry building mixes, Sukhie stroitelnye smesi, (2), pp. 15-16 (in Russian).
42. Shchukin, E.A. & Shchukina, E.G. (2021) Construction materials using asbestos cement waste, Aktualnye voprosy stroitelnogo materialovedeniya. (Ulan-Ude, 21-24 iyulya 2021 goda). Ulan-Ude: Buryatskiy gosudarstvenniy universitet im. Dorzhi Banzarova, pp. 124-128 (in Russian).
43. Yartsev, V.P. & Repina, E.I. (2018) The influence of aggregates from asbestos-cement waste on the physical and mechanical properties and durability of cement-sand concrete, Vestnik BGTU im. V.G. SHuhova, (10), pp. 16-22 (in Russian).
44. Kalashnikov, P.I. (2017) Asphalt concrete using waste asbestos cement products, Nauchnye issledovaniya, 6(2), pp. 20-24 (in Russian).
45. Study of the reactivity of asbestos, selection of mixtures [online]. Available at: https://ozlib.com/1094836/tehnika/izuchenie_reaktsionnoy_sposobnosti_asbestov (in Russian).
46. Lysyannikov, A.V., Tretyakova, E.A. & Lysyannikova, N.N. (2017) Recycled plastic in road construction, Izvestiya TulGU. Tekhnicheskie nauki, (7), pp. 105-115 (in Russian).
47. Salim, K., Houssam, A., Belaid, A. & Brahim, H. (2019) Reinforcement of building plaster by waste plastic and glass, ICSI 2019 The 3rd International Conference on Structural Integrity, pp. 170-176. DOI:https://doi.org/10.1016/j.prostr.2019.08.023.
48. Kou, S.C., Lee, G., Poon, C.S. & Lai, W.L. (2009) Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes, Waste management, (29), pp. 621-629. DOI:https://doi.org/10.1016/j.wasman.2008.06.014.
49. Sikov, N.E., Seryogin, A.I. & Yurkin, U.V. (2022) The use of plastic waste as an aggregate in cement mortar and concrete preparation, Inzhenernyj vestnik Dona, (8) [online]. Available at: https://ivdon.ru/ru/magazine/arhive/n8y2022/7845 (in Russian).