Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 546.723 Трехвалентное железо
Vyyasnen mehanizm vliyaniya promotorov na keramicheskuyu strukturu zhelezooksidnogo katalizatora degidrirovaniya olefinovyh i alkilaromaticheskih uglevodorodov. Pokazana dinamika izmeneniya poristoy struktury legirovannyh i nelegirovannyh katalizatorov v rezul'tate termoobrabotki na vozduhe pri neskol'kih temperaturah, znachitel'no prevyshayuschih temperaturu ekspluatacii. Predstavleny dannye po mehanicheskoy prochnosti legirovannyh i nelegirovannyh model'nyh katalizatorov. V mestah kontakta globul proishodit pripekanie chastic drug k drugu. Pri etom obrazuetsya mehanicheski prochnyy i termicheski ustoychivyy karkas. Opredelena funkciya promotora – kaliya v formirovanii poristoy struktury katalizatora. Predpolozheno, chto kaliy vypolnyaet funkciyu svoeobraznogo flyusa, ponizhaet temperaturu obrazovaniya fazy plavleniya, kotoraya obespechivaet prochnoe pripekanie drug k drugu chastic keramicheskogo materiala – katalizatora. Pri etom formiruetsya ustoychivyy karkas bez zametnogo umen'sheniya rabochey poverhnosti katalizatora. Dobavki oksida cirkoniya v kachestve legiruyuschego agenta obespechivayut ne tol'ko uvelichenie glubiny i stepeni otzhiga nesovershenstv pri perestroyke struktury katalizatora, no i pereraspredelenie vydelyayuscheysya energii. Vyskazannoe predpolozhenie podtverzhdaetsya rostom mehanicheskoy prochnosti granul legirovannogo katalizatora. Rezul'taty issledovaniy mogut byt' ispol'zovany dlya sozdaniya i modificirovaniya zhelezooksidnyh katalizatorov degidrirovaniya olefinovyh i alkilaromaticheskih uglevodorodov.
keramicheskaya struktura, poristaya struktura, promotirovanie kaliem, legiruyuschie dobavki cirkoniya, zhelezooksidnyy katalizator
1. Dvoreckaya A.N., Anikanova L.G., Dvoreckiy N.V. Vliyanie prekursora i rezhima sinteza na svoystva gematita dlya prigotovleniya promotirovannyh zhelezooksidnyh katalizatorov // Kataliz v promysh-lennosti. 2022. T. 22, № 5. S. 6-14. DOI:https://doi.org/10.18412/1816-0387-2022-5-6-14.
2. Anikanova L.G. Dvoreckiy N.V. Kataliticheskie svoystva i himicheskaya ustoychivost' poliferritov kaliya s dobavkami chetyrehzaryadnyh kationov // Kataliz v promyshlennosti. 2021. T. 21, № 3. S. 177 181. DOI:https://doi.org/10.18412/1816-0387-2021-1-3-177-181.
3. Abe K., Kano Yu., Ohshima M., Kurokawa H., Miura H. Effect of adding Mo to Fe-Ce-K mixed oxide cata-lyst on ethylbenzene dehydrogenation // Journal of the Japan Petroleum Institute. 2011. Vol. 54, no. 5. P. 338-343. DOI:https://doi.org/10.1627/jpi.54.338}.
4. Anikanova L.G., Dvoreckiy N.V. Vliyanie dobavok dvuhzaryadnyh ionov na aktivnost' i himicheskuyu ustoychivost' kataliticheski aktivnyh ferritov kaliya // Kataliz v promyshlennosti. 2020. T. 20, № 1. S. 33-39. DOI:https://doi.org/10.18412/1816-0387-2020-1-33-39.
5. Vagapov A.V., Klement'ev A.N., Zhuravleva M.V., Kliment'eva G.Yu. Ekspluatacionnaya effektiv-nost' katalizatorov v proizvodstve aromaticheskih soedineniy // Yuzhno-sibirskiy nauchnyy vestnik. 2019. № 2 (26). C. 33-38. DOI:https://doi.org/10.25699/SSSB.2019.2(26).32518.
6. Wang Li-Li, Zhang Hong, Cheng. First-principles studies on k-promoted porous iron oxide catalysts // Compu-tational condensed Matter 3. 2015. Vol. 3, no. 3. P. 46-52. DOI:https://doi.org/10.1016/j.cocom.2015.03.002.
7. Anikanova L.G., Malysheva Z.G., Sudzilovskaya T.N., Dvoreckiy N.V. Zaryadovaya kompensaciya v po-liferrite kaliya pri legirovanii chetyrehzaryadnymi ionami // Izvestiya vuzov. Himiya i him. tehnolo-giya. 2019. T. 62, № 10. S. 103-108. DOI:https://doi.org/10.6060/ivkkt.20196210.5953.
8. Kano Yu., Ohshima M., Kurokawa H., Miura H. Dehydrogenation of ethylbenzene over Fe – Ce – Rb and Fe – Ce – Cs mixed oxide catalysts // Reaction Kinetics, Mechanisms and Catalysis. 2013. Vol. 109, no. 1. P. 29-41. DOI:https://doi.org/10.1007/s11144-013-0549-2.
9. Li Z., Shanks B.H. Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation // Appl. Catalysis A: Gen. 2011. Vol. 405, no. 1-2. P. 101-107. DOI:https://doi.org/10.1016/j.apcata.2011.07.036.
10. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G., Sudzilovskaya T.N. Formirovanie aktivnogo so-stoyaniya promotirovannogo zhelezooksidnogo katalizatora degidrirovaniya // Ot himii k tehnologii. Shag za shagom. 2021. T. 2, vyp. 1. S. 60-73 DOI:https://doi.org/10.52957/27821900_2021_01_60. URL: http://chemintech.ru/index.php/tor/2021tom2no1
11. Lamberov A.A., Gil'manov H.H., Dement'eva E.V., Kuz'mina O.V. Issledovanie mehanizma vliyaniya dobavok ceriya na svoystva zhelezokalievoy sistemy – aktivnogo komponenta katalizatorov degidri-rovaniya uglevodorodov. Soobschenie 2 // Kataliz v promyshlennosti. 2012. T. 12, № 6. S. 60-68. DOI:https://doi.org/10.18412/1816-0387-2012-6-60-68.
12. Lamberov A.A., Gil'manov H.H. Modernizaciya katalizatorov i tehnologii sinteza izoprena na OAO «Nizhnekamskneftehim». Kazan': Kazan. un-t, 2012. 403 s.
13. Dvoreckiy N.V., Stepanov E.G., Yun V.V., Kotel'nikov G.R. Fazovyy sostav promotirovannyh zhele-zooksidnyh katalizatorov v usloviyah reakcii degidrirovaniya // Izvestiya vuzov. Himiya i him. tehnologiya. 1990. T. 33, № 8. S. 3-9.
14. Garry R., Meima P. Govind Menon Catalyst deactivation phenomena in styrene production // Applied Cataly-sis A: General. 2001. Vol. 212. P. 239-245. URL: http://doi.org/10.1016/S0926-860X(00)00849-8.
15. Muhler M., Schütze J., Wesemann M., Rayment T., Dent A., Schlögl R., Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characteriza-tion // Journal of Catalysis. 1990. Vol. 126, no. 2. P. 339-360. URL: http://doi.org/10.1016/0021-9517(90)90003-3
16. Muhler M., Schlögl R., Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylben-zene to styrene 2. Surface chemistry of the active phase // Journal of Catalysis. 1992. Vol. 138, no. 2 P. 413-444. DOI:https://doi.org/10.1016/0021-9517(92)90295-S.
17. Joergen Lundin, Leif Holmlid, P. Govind Menon, Lars Nyborg. Surface composition of iron oxide catalysts used for styrene production: an Auger electron spectroscopy/scanning electron microscopy study // Ind. Eng. Chem. Res. 1993. Vol. 32, no. 11. R. 2500-2505. URL: https://doi.org/10.1021/ie00023a010
18. Smirnova E.A., Anikanova L.G., Stepanov E.G., Dvoreckiy N.V. Tverdofaznoe vzaimodeystvie v si-steme KFeO2-Fe2O3 // Izvestiya vuzov. Himiya i him. tehnologiya. 1999. T. 42, vyp. 3. S. 116-117.
19. Ataullah Khan, Panagiotis G. Smirniotis. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction // Journal of Molecular Catalysis A: Chemical. 2008. Vol. 280, no. 1-2. P. 43-51. URL: http://doi.org/10.1016/j.molcata.2007.10.022
20. Ataullah Khan, Ping Chen, P. Boolchand, Panagiotis G. Smirniotis. Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications // Journal of Catalysis. 2008. Vol. 253, no. 1. P. 91-104. URL: http://doi.org/10.1016/j.jcat.2007.10.018.
21. Gunugunuri K. Reddy, P. Boolchand, Panagiotis G. Smirniotis. Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study // Journal of Catalysis. 2011. Vol. 282, no. 2. P. 258-269. DOI:https://doi.org/10.1016/j.jcat.2011.06.016.
22. Buyanov N.E., Gudkova G.B., Karnauhov A.P. Opredelenie udel'noy poverhnosti tverdyh tel metodom teplovoy desorbcii argona // Kinetika i kataliz. 1965. T. 6, vyp.6. S. 1085-1091.
23. Plachenov T.G. Rtutnaya porometricheskaya ustanovka P-5M. L.: Himiya, 1962. 24 s.
24. Ione K.G. Rtutnaya porometriya globulyarnyh sistem // Metody issledovaniya katalizatorov i katali-ticheskih reakciy. Novosibirsk, 1965. T. 2. S. 42-54.
25. Radchenko E.D., Nefedov B.K., Aliev R.R. Promyshlennye katalizatory gidrogenizacionnyh proces-sov neftepererabotki. M.: Himiya, 1987. 223 s.
26. Dvoreckiy N.V., Anikanova L.G. Globulyarnaya struktura oksida zheleza // Izvestiya vuzov. Himiya i him. tehnologiya. 2002. T. 45, vyp. 2. S. 149-151.
27. Weiss W., Zscherpel D., Schlogl R. On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts // Catalysis Letters. 1998. Vol. 52, no. 3-4. R. 215-220. DOI:https://doi.org/10.1023/A:1019052310644.
28. Zscherpel D., Weiss W., Schlögl R. Adsorption and Dehydrogenation of Ethylbenzene on Ultrathin Iron Oxide Model Catalyst Films // Surface Science. 1997. Vol. 382, no. 1-3 R. 326-335. URL: http://doi.org/10.1016/S0039-6028(97)00195-7.
29. Wang X.-G., Weiss W., Shaikhutdinov Sh. K., Ritter M., Petersen M., Wagner F., Schlogl R., Scheffle M. The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry // Journal: Physical Review Let-ters, 1998. Vol. 81, no. 5. P. 1038-1041. URL: http://doi.org/10.1103/PhysRevLett.81.1038.
30. Shaikhutdinov S.K., Weiss W. Oxygen pressure dependence of the -Fe2O3(0001) surface structure // Surface Science. 1999. Vol. 432, no 3. R. 627-634. DOI:https://doi.org/10.3389/fchem.2019.00451.
31. Khatamian, M., Ghadiri M., Haghighi M. Deactivation of Fe-K commercial catalysts during ethylbenzene de-hydrogenation and novel method for their regeneration // Indian Journal of Chemical Technology. 2014. Vol. 9, no. 5. P. 158-169.
32. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G. Tipy aktivnyh centrov na poverhnosti promoti-rovannogo zhelezooksidnogo katalizatora // Izvestiya vuzov. Himiya i him. tehnologiya. 2018. T. 61, № 6. S. 61-68. URL: http://dx.doi.org/10.6060/tcct.20186106.5658.
33. Volkov M.I. Vliyanie mehanicheskoy aktivacii na fiziko-himicheskie svoystva oksidov zheleza kak ishodnyh komponentov dlya prigotovleniya katalizatorov: dis. ... kand. him. nauk. Ivanovo,1989. 139 s.