FORMATION OF A CERAMIC STRUCTURE OF PROMOTED IRON OXIDE CATALYST
Abstract and keywords
Abstract (English):
Vyyasnen mehanizm vliyaniya promotorov na keramicheskuyu strukturu zhelezooksidnogo katalizatora degidrirovaniya olefinovyh i alkilaromaticheskih uglevodorodov. Pokazana dinamika izmeneniya poristoy struktury legirovannyh i nelegirovannyh katalizatorov v rezul'tate termoobrabotki na vozduhe pri neskol'kih temperaturah, znachitel'no prevyshayuschih temperaturu ekspluatacii. Predstavleny dannye po mehanicheskoy prochnosti legirovannyh i nelegirovannyh model'nyh katalizatorov. V mestah kontakta globul proishodit pripekanie chastic drug k drugu. Pri etom obrazuetsya mehanicheski prochnyy i termicheski ustoychivyy karkas. Opredelena funkciya promotora – kaliya v formirovanii poristoy struktury katalizatora. Predpolozheno, chto kaliy vypolnyaet funkciyu svoeobraznogo flyusa, ponizhaet temperaturu obrazovaniya fazy plavleniya, kotoraya obespechivaet prochnoe pripekanie drug k drugu chastic keramicheskogo materiala – katalizatora. Pri etom formiruetsya ustoychivyy karkas bez zametnogo umen'sheniya rabochey poverhnosti katalizatora. Dobavki oksida cirkoniya v kachestve legiruyuschego agenta obespechivayut ne tol'ko uvelichenie glubiny i stepeni otzhiga nesovershenstv pri perestroyke struktury katalizatora, no i pereraspredelenie vydelyayuscheysya energii. Vyskazannoe predpolozhenie podtverzhdaetsya rostom mehanicheskoy prochnosti granul legirovannogo katalizatora. Rezul'taty issledovaniy mogut byt' ispol'zovany dlya sozdaniya i modificirovaniya zhelezooksidnyh katalizatorov degidrirovaniya olefinovyh i alkilaromaticheskih uglevodorodov.

Keywords:
keramicheskaya struktura, poristaya struktura, promotirovanie kaliem, legiruyuschie dobavki cirkoniya, zhelezooksidnyy katalizator
Text
Publication text (PDF): Read Download
References

1. Dvoreckaya A.N., Anikanova L.G., Dvoreckiy N.V. Vliyanie prekursora i rezhima sinteza na svoystva gematita dlya prigotovleniya promotirovannyh zhelezooksidnyh katalizatorov // Kataliz v promysh-lennosti. 2022. T. 22, № 5. S. 6-14. DOI:https://doi.org/10.18412/1816-0387-2022-5-6-14.

2. Anikanova L.G. Dvoreckiy N.V. Kataliticheskie svoystva i himicheskaya ustoychivost' poliferritov kaliya s dobavkami chetyrehzaryadnyh kationov // Kataliz v promyshlennosti. 2021. T. 21, № 3. S. 177 181. DOI:https://doi.org/10.18412/1816-0387-2021-1-3-177-181.

3. Abe K., Kano Yu., Ohshima M., Kurokawa H., Miura H. Effect of adding Mo to Fe-Ce-K mixed oxide cata-lyst on ethylbenzene dehydrogenation // Journal of the Japan Petroleum Institute. 2011. Vol. 54, no. 5. P. 338-343. DOI:https://doi.org/10.1627/jpi.54.338}.

4. Anikanova L.G., Dvoreckiy N.V. Vliyanie dobavok dvuhzaryadnyh ionov na aktivnost' i himicheskuyu ustoychivost' kataliticheski aktivnyh ferritov kaliya // Kataliz v promyshlennosti. 2020. T. 20, № 1. S. 33-39. DOI:https://doi.org/10.18412/1816-0387-2020-1-33-39.

5. Vagapov A.V., Klement'ev A.N., Zhuravleva M.V., Kliment'eva G.Yu. Ekspluatacionnaya effektiv-nost' katalizatorov v proizvodstve aromaticheskih soedineniy // Yuzhno-sibirskiy nauchnyy vestnik. 2019. № 2 (26). C. 33-38. DOI:https://doi.org/10.25699/SSSB.2019.2(26).32518.

6. Wang Li-Li, Zhang Hong, Cheng. First-principles studies on k-promoted porous iron oxide catalysts // Compu-tational condensed Matter 3. 2015. Vol. 3, no. 3. P. 46-52. DOI:https://doi.org/10.1016/j.cocom.2015.03.002.

7. Anikanova L.G., Malysheva Z.G., Sudzilovskaya T.N., Dvoreckiy N.V. Zaryadovaya kompensaciya v po-liferrite kaliya pri legirovanii chetyrehzaryadnymi ionami // Izvestiya vuzov. Himiya i him. tehnolo-giya. 2019. T. 62, № 10. S. 103-108. DOI:https://doi.org/10.6060/ivkkt.20196210.5953.

8. Kano Yu., Ohshima M., Kurokawa H., Miura H. Dehydrogenation of ethylbenzene over Fe – Ce – Rb and Fe – Ce – Cs mixed oxide catalysts // Reaction Kinetics, Mechanisms and Catalysis. 2013. Vol. 109, no. 1. P. 29-41. DOI:https://doi.org/10.1007/s11144-013-0549-2.

9. Li Z., Shanks B.H. Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation // Appl. Catalysis A: Gen. 2011. Vol. 405, no. 1-2. P. 101-107. DOI:https://doi.org/10.1016/j.apcata.2011.07.036.

10. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G., Sudzilovskaya T.N. Formirovanie aktivnogo so-stoyaniya promotirovannogo zhelezooksidnogo katalizatora degidrirovaniya // Ot himii k tehnologii. Shag za shagom. 2021. T. 2, vyp. 1. S. 60-73 DOI:https://doi.org/10.52957/27821900_2021_01_60. URL: http://chemintech.ru/index.php/tor/2021tom2no1

11. Lamberov A.A., Gil'manov H.H., Dement'eva E.V., Kuz'mina O.V. Issledovanie mehanizma vliyaniya dobavok ceriya na svoystva zhelezokalievoy sistemy – aktivnogo komponenta katalizatorov degidri-rovaniya uglevodorodov. Soobschenie 2 // Kataliz v promyshlennosti. 2012. T. 12, № 6. S. 60-68. DOI:https://doi.org/10.18412/1816-0387-2012-6-60-68.

12. Lamberov A.A., Gil'manov H.H. Modernizaciya katalizatorov i tehnologii sinteza izoprena na OAO «Nizhnekamskneftehim». Kazan': Kazan. un-t, 2012. 403 s.

13. Dvoreckiy N.V., Stepanov E.G., Yun V.V., Kotel'nikov G.R. Fazovyy sostav promotirovannyh zhele-zooksidnyh katalizatorov v usloviyah reakcii degidrirovaniya // Izvestiya vuzov. Himiya i him. tehnologiya. 1990. T. 33, № 8. S. 3-9.

14. Garry R., Meima P. Govind Menon Catalyst deactivation phenomena in styrene production // Applied Cataly-sis A: General. 2001. Vol. 212. P. 239-245. URL: http://doi.org/10.1016/S0926-860X(00)00849-8.

15. Muhler M., Schütze J., Wesemann M., Rayment T., Dent A., Schlögl R., Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characteriza-tion // Journal of Catalysis. 1990. Vol. 126, no. 2. P. 339-360. URL: http://doi.org/10.1016/0021-9517(90)90003-3

16. Muhler M., Schlögl R., Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylben-zene to styrene 2. Surface chemistry of the active phase // Journal of Catalysis. 1992. Vol. 138, no. 2 P. 413-444. DOI:https://doi.org/10.1016/0021-9517(92)90295-S.

17. Joergen Lundin, Leif Holmlid, P. Govind Menon, Lars Nyborg. Surface composition of iron oxide catalysts used for styrene production: an Auger electron spectroscopy/scanning electron microscopy study // Ind. Eng. Chem. Res. 1993. Vol. 32, no. 11. R. 2500-2505. URL: https://doi.org/10.1021/ie00023a010

18. Smirnova E.A., Anikanova L.G., Stepanov E.G., Dvoreckiy N.V. Tverdofaznoe vzaimodeystvie v si-steme KFeO2-Fe2O3 // Izvestiya vuzov. Himiya i him. tehnologiya. 1999. T. 42, vyp. 3. S. 116-117.

19. Ataullah Khan, Panagiotis G. Smirniotis. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction // Journal of Molecular Catalysis A: Chemical. 2008. Vol. 280, no. 1-2. P. 43-51. URL: http://doi.org/10.1016/j.molcata.2007.10.022

20. Ataullah Khan, Ping Chen, P. Boolchand, Panagiotis G. Smirniotis. Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications // Journal of Catalysis. 2008. Vol. 253, no. 1. P. 91-104. URL: http://doi.org/10.1016/j.jcat.2007.10.018.

21. Gunugunuri K. Reddy, P. Boolchand, Panagiotis G. Smirniotis. Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study // Journal of Catalysis. 2011. Vol. 282, no. 2. P. 258-269. DOI:https://doi.org/10.1016/j.jcat.2011.06.016.

22. Buyanov N.E., Gudkova G.B., Karnauhov A.P. Opredelenie udel'noy poverhnosti tverdyh tel metodom teplovoy desorbcii argona // Kinetika i kataliz. 1965. T. 6, vyp.6. S. 1085-1091.

23. Plachenov T.G. Rtutnaya porometricheskaya ustanovka P-5M. L.: Himiya, 1962. 24 s.

24. Ione K.G. Rtutnaya porometriya globulyarnyh sistem // Metody issledovaniya katalizatorov i katali-ticheskih reakciy. Novosibirsk, 1965. T. 2. S. 42-54.

25. Radchenko E.D., Nefedov B.K., Aliev R.R. Promyshlennye katalizatory gidrogenizacionnyh proces-sov neftepererabotki. M.: Himiya, 1987. 223 s.

26. Dvoreckiy N.V., Anikanova L.G. Globulyarnaya struktura oksida zheleza // Izvestiya vuzov. Himiya i him. tehnologiya. 2002. T. 45, vyp. 2. S. 149-151.

27. Weiss W., Zscherpel D., Schlogl R. On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts // Catalysis Letters. 1998. Vol. 52, no. 3-4. R. 215-220. DOI:https://doi.org/10.1023/A:1019052310644.

28. Zscherpel D., Weiss W., Schlögl R. Adsorption and Dehydrogenation of Ethylbenzene on Ultrathin Iron Oxide Model Catalyst Films // Surface Science. 1997. Vol. 382, no. 1-3 R. 326-335. URL: http://doi.org/10.1016/S0039-6028(97)00195-7.

29. Wang X.-G., Weiss W., Shaikhutdinov Sh. K., Ritter M., Petersen M., Wagner F., Schlogl R., Scheffle M. The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry // Journal: Physical Review Let-ters, 1998. Vol. 81, no. 5. P. 1038-1041. URL: http://doi.org/10.1103/PhysRevLett.81.1038.

30. Shaikhutdinov S.K., Weiss W. Oxygen pressure dependence of the -Fe2O3(0001) surface structure // Surface Science. 1999. Vol. 432, no 3. R. 627-634. DOI:https://doi.org/10.3389/fchem.2019.00451.

31. Khatamian, M., Ghadiri M., Haghighi M. Deactivation of Fe-K commercial catalysts during ethylbenzene de-hydrogenation and novel method for their regeneration // Indian Journal of Chemical Technology. 2014. Vol. 9, no. 5. P. 158-169.

32. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G. Tipy aktivnyh centrov na poverhnosti promoti-rovannogo zhelezooksidnogo katalizatora // Izvestiya vuzov. Himiya i him. tehnologiya. 2018. T. 61, № 6. S. 61-68. URL: http://dx.doi.org/10.6060/tcct.20186106.5658.

33. Volkov M.I. Vliyanie mehanicheskoy aktivacii na fiziko-himicheskie svoystva oksidov zheleza kak ishodnyh komponentov dlya prigotovleniya katalizatorov: dis. ... kand. him. nauk. Ivanovo,1989. 139 s.

Login or Create
* Forgot password?