SUPRA-MOLECULAR IMPROVEMENT OF THE PERFORMANCE CHARACTERISTICS OF ASPHALT CONCRETE ROAD SURFACES BY STRUCTURING ADDITIVES OF FUNCTIONAL POLYMERS
Abstract and keywords
Abstract (English):
The article proposes relevant technical and technological solutions that increase the durability of asphalt concrete road pavements. By introducing functional polymer additives – butadiene-styrene copolymers – into the bitumen component, it is possible to reduce the temperature sensitivity of asphalt concrete pavements, increase their hardness in the summer season and reduce their brittleness in winter. The optimised addition of polymer modifiers contributes to the formation of stable supramolecular complexes in asphalt concrete. The quality of the finished composition is significantly affected by the characteristics of all components - mineral powder, sand, crushed stone, bituminous binder and macromolecular additives of functional polymers. During the preparation of the asphalt concrete mixture, it is important to maintain constant process parameters (temperature, mixing intensity, etc.). A supramolecular complementary three-dimensional network formed in the bituminous binder with the participation of composite butadiene-styrene copolymers gives road surfaces additional strength, wear resistance, heat resistance and the ability to undergo highly elastic deformations in the temperature range from -70ºC to +90ºC. Asphalt concrete pavements based on modified polymer-bitumen binders increase the performance of motorway roadbeds and resistance to plastic deformation (shearing, rutting).

Keywords:
road, road bitumen, functional polymers, asphalt concrete coatings
Text
Text (PDF): Read Download
References

1. Kotenko, N.P., Shcherba, Yu.S. and Evforitskiy, A.S. (2019), ''Effect of polymer and functional additives on the properties of bitumen and asphalt-concrete'', Plasticheskie massy, no. 11-12, pp. 47-49 (in Russian). https://doi.org/10.35164/0554-2901-2019-11-12-47-49. EDN: https://elibrary.ru/VFMBOX

2. Porto, M., Caputo, P., Loise, V., Rossi, C.O., Eskandarsefat, S. and Teltayev, B. (2019), ''Bitumen and bitumen modification: a review on latest advances'', Appl. Sci., vol. 9, no. 4, p. 742. https://doi.org/10.3390/app9040742. EDN: https://elibrary.ru/WUSDOZ

3. Timrot, S.D., Kalaeva, S.Z. kzy, Markelova, N.L. and Kalaev, R.E. (2024), ''A modifying additive for asphalt concrete quality improvement'', Smart Composite in Construction, vol. 5, no. 2, pp. 51-61. URL: https://comincon.ru/ru/nauka/issue/5160/view. DOI:https://doi.org/10.52957/2782-1919-2024-5-2-51-61 (in Russian). EDN: https://elibrary.ru/OVVVXM

4. Khalikov, R.M., Ivanova, O.V. and Glazachev A.O. (2022), ''Supramolecular improvement of technological parameters of asphalt concrete road surfaces by polymer nanocomposites'', Act. probl. of techn., natur. and human. sci.: Mat. Inter. conf. Ufa: USPTU, pp. 432-436 (in Russian). EDN: https://elibrary.ru/FHIQVG

5. Nebratenko, D.Yu. and Lushnikov, N.A. (2022), ''Polymer bitumen modifiers: butadiene-styrene thermoplastic and syndiotactic polybutadiene'', Bull. VSGUT, vol. 2, no. 85, pp. 78-86. https://doi.org/10.53980/24131997_2022_2_78 (in Russian). EDN: https://elibrary.ru/DKHZVY

6. Dong, F., Yang, P., Yu, X., Jiang, M., Wang, S., Zu, Y., Chen, B. and Wang, J. (2023), ''Morphology, chemical reaction mechanism, and cross-linking degree of asphalt binder modified by SBS block co-polymer'', Construction and Building Materials, vol. 378, p. 131204. https://doi.org/10.1016/j.conbuildmat.2023.131204. EDN: https://elibrary.ru/DSBKMW

7. Ignatyev, A.A. (2023), ''Additives in asphalt concrete. Literature rev.'', Izv. KGASU, vol. 1, no. 63, pp. 14-30. https://doi.org/10.52409/20731523_2023_1_14 (in Russian). EDN: https://elibrary.ru/EXDWYX

8. Khalikov, R.M., Vedernikova, T.G., Sharipov, R.A., Rashidova, S.T. and Borisov, I.M. (2008), ''Synergetic dynamism of formation of supramolecular structures of polymers'', ChemChemTech., vol. 51, no. 11, pp. 92-94 (in Russian). EDN: https://elibrary.ru/JSHUMN

9. Pudovkin, A.N., Khalikov, R.M., Bulatov, B.G., Sokolova, V.V. and Nedoseko, I.V. (2021), ''Digital control of parameters in the automated control system for the production of asphalt concrete mixtures'', Electrotech. and inform. complexes and systems, vol. 17, no. 3-4, pp. 103-113. https://doi.org/10.17122/1999-5458-2021-17-3-4-103-113 (in Russian). EDN: https://elibrary.ru/HEKXXX

10. Kalgin, Yu.I. and Komarov, E.V. (2020), ''Modified styrene butadiene thermoplastic and polymer additives for road construction'', Izv. vuzov. Construction, vol. 9, no. 741, pp. 58-67. DOI:https://doi.org/10.32683/0536-1052-2020-741-9-58-67 (in Russian). EDN: https://elibrary.ru/UHCQJU

11. Glazachev, A.O., Pavlov, S.Yu., Ivanova, O.V. and Khalikov, R.M. (2024), ''Synergetic technologies for designing wear-resistant layers of asphalt-concrete road coverings'', Trends in the development of science and education, no. 106-9, pp. 22-25 (in Russian). DOIhttps://doi.org/10.18411/trnio-02-2024-481. EDN: https://elibrary.ru/XFHWBO

12. Nedoseko, A.I. and Khalikov, R.M. (2025), ''Resource-saving technologies for the use of ash and slag waste in the regional construction of transport facilities'', Problems of the Russian construction complex: Mat. XXIX Inter. Conf. Ufa: Publ. USPTU, pp. 370-373 (in Russian). EDN: https://elibrary.ru/SCHAMQ

13. Crucho, J., Picado-Santos, L., Neves, J. and Capitão, S. (2019), ''A review of nanomaterials effect on mechanical performance and aging of asphalt mixtures'', Appl. Sci., vol. 9, no. 18, p. 3657. https://doi.org/10.3390/app9183657. EDN: https://elibrary.ru/OCNKXB

14. Ignatyev, A.A., Razgovorov, P.B. and Gotovtsev, V.M. (2023), ''Structure formation and consumer properties of granular asphalt-concrete mixtures with phosphogypsum inclusion and secondary polyethylene terephthalate'', Construction and reconstruction, vol. 1, no. 105, pp. 123-132. DOI:https://doi.org/10.33979/2073-7416-2023-105-1-123-132 (in Russian). EDN: https://elibrary.ru/HAMQSO

Login or Create
* Forgot password?