SINTEZ I ISSLEDOVANIE BIOLOGICHESKOI AKTIVNOSTI SPIROKARBONA I EGO KOMPLEKSOV S KATIONAMI RYADA PEREKHODNYKH EHLEMENTOV
Abstract and keywords
Abstract (English):
Proveden sintez liganda – spirokarbona (4,4,10,10-tetrametil-1,3,7,9-tetraazospiro[5.5]undekan-2,8-diona) i koordinacionnyh soedineniy spirokarbona s kationami perehodnyh metallov: Co2+, Cd2+, La3+, Cu2+, Zn2+, Mn2+. Obrazovanie koordinacionnyh soedineniy podtverzhdeno dannymi IK i UF-spektroskopii. V elektronnyh spektrah kompleksnyh soedineniy zafiksirovan batohromnyy sdvig polosy, sootvetstvuyuschey ligandu, a takzhe poyavlenie novyh maksimumov pogloscheniya v dlinnovolnovoy oblasti. Na osnovanii rezul'tatov molekulyarnogo dokinga bylo pokazano, chto naydennaya biologicheskaya mishen' – α-sinuklein, svyazyvaetsya s ligandom (spirokarbonom) posredstvom vodorodnyh svyazey mezhdu atomami kisloroda i vodoroda amidnoy gruppy 4,4,10,10-tetrametil-1,3,7,9-tetraazospiro[5.5]undekan-2,8-diona i atomami vodoroda i kisloroda aminokislotnyh ostatkov belka. Issledovana zavisimost' lipofil'nosti ot rN sredy kompleksnyh soedineniy spirokarbona

Keywords:
spirokarbon, IK spektroskopiya, elektronnaya spektroskopiya, perehodnye metally, kompleksoobrazovanie, PASS online, molekulyarnyy doking.
Text
Text (PDF): Read Download
References

1. Weinschenk A.U. Condensation von Aceton mit Harnstoff. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2185-2187.

2. Zigeuner G., Fuchs E., Brunetti H. Über Heterocyclen, 8. Mitt.: Über 6,6′-Spirobis-(2-oxo-bzw. 2-thionohexa-hydropyrimidine). Monatsh. Chem., 1966, 97, 36-42. DOI:https://doi.org/10.1007/BF00905481.

3. Alam M., Ahmad M., Rasheed A., Ahmad A. Biopharmaceutical studies of spirobishexahydropyrimidine. Indian J. Exp. Biol., 1992, 30(12), 1181-1183.

4. Dudok K.P., Fedorovich A.M., Dudok T.G., Rechic'kiy O.N., Єres'ko V.A., Shkavolyak A.V., Sibіrna N.O. Vpliv spіrokarbonu ta pohіdnih pіrolopіrimіdindіonіv na fіziko-hіmіchnі harakteristiki lіgandnih form gemoglobіnu in vitro. Studia biologica, 2009, 3(2), 23-34.

5. Starikovich L.S., Starikovich M.A., Rechickiy A.N., Eres'ko V.A., Kosyak T.Yu., Sibirnaya N.A. Doslіdzhennya vplivu spіrokarbonu ta pohіdnih pіrolopіrimіdindіonіv na leykoznі klіtini. Studia biologica, 2009, 3(2), 93-98.

6. Dudok K.P., Starikovich M.A., Rechickiy A.N., Shkavolyak A.V., Sibirnaya N.A. Rol' pohіdnih pіrolopіrimіdindіonіv u regulyacії fіziko-hіmіchnih harakteristik gemoglobіnu y aktivnostі okremih fermentіv antioksidantnogo zahistu krovі lyudey in vitro. Vіsnik L'vіvs'kogo unіv. Ser. bіol., 2012, 60, 126-136.

7. Musatov A.G., Semyashkina A.A., Dashevskiy R.F. Faktory optimizacii formirovaniya produktivnosti rasteniy i kachestva zerna yarovogo yachmenya i ovsa. Hranenie i pererabotka zerna, 2007, 7, 38-41.

8. Zlobin A.I. Morfofiziologicheskie i biohimicheskie izmeneniya u rasteniy yachmenya pri obrabotke regulyatorami rosta, dis.kand. biol. nauk. M., 1994, 18 s.

9. Wagner W.J., Gross M.L. Using mass spectrometry‐based methods to understand amyloid formation and inhibition of alpha‐synuclein and amyloid beta. Mass spectrom. rev., 2024, 43(4), 782-825. DOI:https://doi.org/10.1002/mas.21814.

10. Li S., Liu, Y., Lu S., Xu J., Liu X., Yang D. A crazy trio in Parkinson's disease: metabolism alteration, α synuclein aggregation, and oxidative stress. Mol. Cell. Biochem., 2025, 480(1), 139-157. DOI:https://doi.org/10.1007/s11010-024-04985-3.

11. Zueva I.V., Vasilieva E.A., Gaynanova G.A., Moiseenko A.V., Burtseva A.D. Can activation of acetylcholinesterase by β-amyloid peptide decrease the effectiveness of cholinesterase inhibitors? Int. J. Mol. Sci., 2023, 24(22), 16395. DOI:https://doi.org/10.3390/ijms242216395.

12. Gajendra K., Pratap G.K., Poornima D.V., Shantaram M., Ranjita G. Natural acetylcholinesterase inhibitors: a multi-targeted therapeutic potential in Alzheimer's disease Eur. J. Med. Chem. Rep., 2024, 11, 100154. DOI:https://doi.org/10.1016/j.ejmcr.2024.100154.

13. Mortada S., Karrouchi K., Hamza E.H., Oulmidi A., Bhat M.A., Mamad H. Synthesis, structural characterizations, in vitro biological evaluation and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents. Sci. Rep., 2024, 14(1), 1312. DOI:https://doi.org/10.1038/s41598-024-51290-6.

14. Hadda T.B., Deniz F.S., Orhan I.E., Zgou H., Rauf A., Mabkhot Y.N., Maalik A. Spiro heterocyclic compounds as potential anti-alzheimer agents (Part 2): Their metal chelation capacity, POM analyses and DFT studies. Med. Chem., 2021, 17(8), 834-843. DOI:https://doi.org/10.2174/1573406416666200610185654.

15. Shubina A.A., Orlova T.N. Sintez i osobennosti struktury kompleksnyh soedineniy La(III) s organicheskimi ligandami. Cifra. Himiya. 2024, 1(1), 1-13. URL: https://chemistry.cifra.science/archive/1-1-2024-april/10.18454/CHEM.2024.1.5 (data obrascheniya: 20.07.2025).

16. Netreba E.E., Fedorenko A.M., Pavlov A.A. Sintez i issledovanie molekulyarno-kristallicheskoy struktury 4,4,10,10-tetrametil-1,3,7,9-tetraazospiro(5.5)undekan-2,8-diona. Nauk. vіsnik Uzh. unіv. Ser.: Hіmіya., 2011, 1, 107-116.

17. Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Comp., 2014, 50(3), 444-457. DOI:https://doi.org/10.1007/s10593-014-1496-1.

18. Ulmer T.S., Bax A., Cole N.B., Nussbaum R.L. Structure and dynamics of micelle-bound human alpha synuclein. J. Biol. Chem., 2005, 280(10), 9595-9603. DOI:https://doi.org/10.1074/jbc.M411805200.

19. Granovsky A.A. Firefly version 7.1.G, URL: http://classic.chem.msu.su/gran/firefly/index.html (data obrascheniya: 20.07.2025).

20. Zhurko G., Zhurko D. Chemcraft: graphical software for visualization of quantum chemistry computations. Version 1.8 (build 682). Chemcraft website. 2025. URL: https://www.chemcraftprog.com (data obrascheniya: 20.07.2025).

21. Grosdidier A., Zoete V., Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39 (Web Server issue), 270-277. DOI:https://doi.org/10.1093/nar/gkr366.

22. ChemAxon Log D vs. pH Predictor. ChemAxon. URL: https://chemaxon.com/products/logd-predictor (data obrascheniya: 20.07.2025).

23. Wu K., Kwon S., Zhou X., Fuller C., Wang X., Vadgama J., Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int. J. Mol. Sci., 6, 25(23), 13121. DOI:https://doi.org/10.3390/ijms252313121.

Login or Create
* Forgot password?