аспирант
Нижний Новгород, Нижегородская область, Россия
Институт химии высокочистых веществ имени Г.Г. Девятых РАН
Нижний Новгород, Нижегородская область, Россия
Институт химии высокочистых веществ имени Г.Г. Девятых РАН
Нижний Новгород, Нижегородская область, Россия
Нижний Новгород, Нижегородская область, Россия
Нижний Новгород, Нижегородская область, Россия
УДК 544.35 Химия растворов (жидкая гомогенная фаза). Общие вопросы. Истинные растворы
The paper presents the results of obtaining samples of high-purity tetrakis(trifluorophosphine) nickel. Chromatography-mass spectrometry and inductively coupled plasma mass spectrometry indicate impurity, elemental, and molecular composition of the initial and purified samples. If a distillation rate of 80 μl/min and an extraction fraction of 50%, the content of iron, copper, and cobalt limiting impurities is below 0.01 ppm; PF3, CH2Cl2 and hydrocarbons are at the level of n-10-3 ÷ n-10-5 mol%.
tetrakis(trifluorophosphine) of nickel, impurity, distillation, deep purification, partition coefficient.
1. Makhatadze G.V., Schiller M., Bizzarro M. High precision nickel isotope measurements of early Solar System materials and the origin of nucleosynthetic disk variability. Geochim. Cosmochim. Acta, 2023, 343, 17-32. DOI:https://doi.org/10.1016/j.gca.2022.12.020.
2. Baranov V.Yu. Isotopes: properties, production, application. M.: FIZMATLIT. 2005, 600 p. (In Russian).
3. Klein C.B., Costa M. Handbook on the Toxicology of Metals (Fifth Edition). Volume II: Specific Metals, 2022, 615–637.
4. Khorasanov G.L., Ivanov A.P., Blokhin A.I., Demin N.A. High- nickel steels depleted with nickel-58 isotope for fast reactor fuel element cladding. Vopr. atom. nauki i tekhniki. Seriya: Materialovedenie i novye materialy [Issues of Atomic Science and Technology. Series: Material Science and New Materials], 2006, 2(67), 229-232 (in Russian).
5. Uhm Y.R., Choi B.G., Kim J.B., Jeong D.H., Son K.J. Study of a betavoltaic battery using electroplated nickel-63 on nickel foil as a power source. Nucl. Eng. Technol., 2016, 48(3), 773-777. DOI:https://doi.org/10.1016/j.net.2016.01.010.
6. Kharitonov I.D., Mazgunova V.A., Babain V.A., Kostylev A.I., Merkushkin A.O., Shemukhin A.A., Balakshin Y.V., Kozhemyako A.V., Kalmykov S.N., Magomedbekov E.P. CVD-technology of production of Ni-based atomic sources. Radiokhimiya [Radiochemistry], 2018, 60(2), 143-147 (in Russian).
7. Baldokhin Y.V., Perfiliev Y.D., Kulikov L.A., Burnazyan M.A. Oxidation of iron with different isotope content. Vestnik Moskovskogo universiteta. Ser. 2. Khimiya [Bulletin of Moscow University. Ser. 2. Chemistry], 2015, 56(2), 91-97 (in Russian).
8. Asadulin R.S., Galkin D.E., Maslov A.E., Palienko A.A., Sovach V.P., Tukhvatullin V.K., Ushakov A.A. Patent RU No. 2748573 C1, 2021.
9. Orlov, A.A.; Ushakov, A.A.; Sovach, V.P. Separation of nickel isotopes in the process of filling a cascade of gas centrifuges with different number of stages. TOKhT, 2019, 53(2), 146-151. DOI:https://doi.org/10.1134/S0040357119020131 (in Russian).
10. Merkulov I.A., Tikhomirov D.V., Obedin A.A., Zhabin A.Y., Paretskova S.A., Tomarev A.N., Kudrina Yu.V., Grigorieva V.A. Patent RU No. 2650955 C1, 2018.
11. Sozin, A.Yu., Chernova, O.Yu., Sorochkina, T.G., Troshin, O.Yu., Bulanov, A.D. Identification of impurities in tetrakis(trifluorophosphine) nickel using chromatography-mass spectrometry. AiK, 2018, 22(3), 253-258. DOI:https://doi.org/10.15826/analitika.2018.22.3.010 (in Russian).
12. Alekseev A.V., Yakimovich P.V., Kvachenok I.K. Determination of impurities in nickel by ICP-MS. Trudy VIAM [Proceedings of VIAM], 2020, 2(86), 101-108. DOI:https://doi.org/10.18577/2307-6046-2020-0-2-101-108. Available at: https://elibrary.ru/item.asp?id=42392009 (accessed 29.01.2025) (in Russian).
13. Toporov Y.G., Tarasov V.A., Romanov E.G., Kazakov L.L., Andreev O.I., Andreychuk N.N., Kornilov A.S., Rotmanov K.V. Obtaining of nickel-63 for current sources. Sbornik trudov AO GNTs NIIAR, 2018, 2, 34-40 (in Russian).
14. Prusakov V.N., Petrov Y.V., Simonov N.F., Khrustalev B.V. Patent SU 1061391, 1987.
15. Otopkova P.A., Potapov A.M., Suchkov A.I., Bulanov A.D., Lashkov A.Yu. Application of internal standard in isotopic analysis of highly enriched silicon-28 by high-resolution inductively coupled plasma mass spectrometry. AiK, 2021, 25(2), 98-109. DOI:https://doi.org/10.15826/analitika.2021.25.2.009 (in Russian).
16. Troshin O.Yu., Bulanov A.D., Chernova O.Yu. Liquid–Vapor Equilibria in the SiCl4–A (A = SiCl4–nFn (n = 1–4) Impurity) Systems. Inorg. Mater., 2018, 54, 840-843. DOI:https://doi.org/10.1134/S0020168518080162.
17. Devyatykh G.G., Yelliev Yu.E. Deep purification of substances. Textbook for universities. Moscow: ‘Higher School’. 1974, 160 p. (In Russian).
18. Kovalev I.D., Potapov A.M., Bulanov A.D. Measurement of isotopic composition of isotope-enriched silicon and its volatile compounds by laser mass spectrometry. Mass-spektrometriya [Mass Spectrometry], 2004, 1(1), 37-44 (in Russian).