Курган, Россия
УДК 543.422.3-76 Ультрафиолетовая спектрометрия
Предложены методы определения клопидогрела и метамизола натрия в смывных водах с промышленного оборудования с использованием многоволновой УФ-спектрометрии и вычисления площадей под кривыми. Запись спектров осуществляется в водном растворе без предварительного регулирования рН. Численное интегрирование спектров проводится в интервале длин волн от 210 до 290 нм для клопидогрела, и от 220 до 320 нм для метамизола натрия. Методы позволяют определять клопидогрел и метамизол натрия в растворе в интервале концентраций 1 – 100 мг/л, не требуют длительной пробоподготовки и сложного аналитического оборудования и подходят для повседневного определения указанных препаратов в смывных водах с промышленного оборудования.
клопидогрел, метамизол натрия, водный раствор, интегральное спектрофотометрическое определение, метод площади под кривой, смывные воды с промышленного оборудования
1. Zaazaa H. E. et al. Spectrophotometric and spectrodensitometric determination of Clopidogrel Bisulfate with kinetic study of its alkaline degradation // Talanta. 2009. Vol. 78. No. 3. P. 874-884. DOI:https://doi.org/10.1016/j.talanta.2008.12.064.
2. Antypenko L., Gladysheva S., Vasyuk S. Development and validation of clopidogrel bisulphate determination in bulk by UV spectrophotometric method // Scripta Scientifica Pharmaceutica. 2016. Vol. 3. No. 2. P. 25-30. DOI:https://doi.org/10.14748/ssp.v3i2.1704.
3. Dermiş S., Aydoğan E. Rapid and accurate determination of clopidogrel in tablets by using spectrophotometric and chromatographic techniques // Communications Faculty of Sciences University of Ankara. Series B. Chemistry and Chemical Engineering. 2009. Vol. 55. No. 1. P. 1-16.
4. Rao K. M. et al. Determination of clopidogrel by visible spectrophotometry in pure form and pharmaceutical formulations // Journal of the Indian Chemical Society. 2016. Vol. 93. P. 1-8.
5. Shireesha M., Madhavi L., Tuljarani G. Spectrophotometric Determination of Clopidogrel in Pharmaceutical Formulations // Asian Journal of Research in Chemistry. 2011. Vol. 4. No. 10. P. 1566-1568.
6. Koçak Ö. F., Kadıoğlu Y., Şenol O. Determination of Clopidogrel in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods // International Journal of Innovative Research and Reviews. 2020. Vol. 4. No. 1. P. 14-19.
7. Cholke P. B. et al. Development and Validation of Spectrophotometric Method for Clopidogrel bisulfate in pure and in film coated tablet dosage form // Archives of Applied Science Research. 2012. Vol. 4. No. 1. P. 59-64.
8. Cholke P. et al. Development and validation of spectrophotometric method for clopidogrel bisulfate in bulk and formulations // International Journal of Chemical Sciences. 2012. Vol. 10. No. 1. P. 449-456.
9. Mohamed S.H., Issa Y.M., Salim A.I. Quantitative Determination of Clopidogrel Bisulfate using Validated Spectrophotometric Methods // Asian Journal of Advances in Research. 2020. Vol. 3. No. 1. P. 180-190.
10. Gurav S., Venkatamahesh R. Development and Validation of Derivative UV-Spectrophotometric Methods for Quantitative Estimation of Clopidogrel in Bulk and Pharmaceutical Dosage Form // International Journal of ChemTech Research. 2012. Vol. 4. No. 2. P. 497-501.
11. Padmalatha M., Prakash K.V. Extractive Spectrophotometric Determination of Clopidogrel Bisulphite In Pharmaceutical Formulation // Research Journal of Pharmacy and Technology. 2009. Vol. 2. No. 4. P. 727-729.
12. Rajendra V. B. et al. Spectrophotometric method for the estimation of Clopidogrel bisulphate residue in swab samples // World Journal of Pharmaceutical Research. 2012. Vol. 1. No. 3 P. 850-858.
13. Jane J., Jasminkumar M.V., Prasanth D. Estimation of Clopidogrel in Bulk and Pharmaceutical Formulations // Asian Journal of Research in Chemistry. 2010. Vol. 3. No. 4. P. 1086-1089.
14. Gurav S. et al. Spectrophotometric determination of clopidogrel bisulfate in pharmaceutical formulations // American Journal of PharmTech Research. 2011. Vol. 1. No. 4. P. 258-263.
15. Thejomoorthy K. et al. Method Development and Validation for the Quantification of Clopidogrel Bisulphate in Bulk and its Dosage form // International Journal of Pharma Research and Health Sciences. 2019. Vol. 7. No. 1. P. 2882-2885. DOI:https://doi.org/10.21276/ijprhs.2019.01.04.
16. Gavat C.C. Quantitative Analysis Method of Sodium Metamizole in Tablets by Visible (VIS) Spectrophotometry: Spectrophotometric Analysis Method in Visible Range (VIS) // ScienceOpen Preprints. 2024. DOI:https://doi.org/10.14293/PR2199.000614.v1.
17. Chiruță C. et al. The spectrophotometric analysis method of metamizole from pharmaceutical tablets: investigation of linearity, limit of detection and limit of quantification // Universitatea de Stiinte Agricole Si Medicina Veterinara Ion Ionescu de la Brad Iasi, Seria Horticultura. 2018. Vol. 61. No. 1. P. 47-52.
18. Bautista J.A.G. et al. Indirect catalytic spectrophotometric determination of metamizol following oxidation by lead dioxide immobilized in a polyester resin bed // Analytical Letters. 1996. Vol. 29. No. 15. P. 2667-2678. DOI:https://doi.org/10.1080/00032719608002271.
19. Al-Shwaiyat M. et al. Sequential injection spectrophotometric determination of analgine in pharmaceutical formulations using 18-molybdo-2-phosphate heteropoly anion as chromogenic reagent // Вісник Дніпропетровського університету. Серія «Хімія». 2013. №. 2. Вип. 19. С. 7-18. DOI:https://doi.org/10.15421/081301.
20. Sakiara K.A. et al. Spectrophotometric determination of dipyrone in pharmaceutical preparations by using chromotropic acid // Il Farmaco. 1999. Vol. 54. No. 9. P. 629-635. DOI:https://doi.org/10.1016/S0014-827X(99)00073-7.
21. Abdine H., Soliman S.A., Morcos M.G. Colorimetric determination of dipyrone // Journal of Pharmaceutical Sciences. 1973. Vol. 62. No. 11. P. 1834-1836. DOI:https://doi.org/10.1002/jps.2600621121.
22. Suarez W.T. et al. Flow injection spectrophotometric determination of dipyrone in pharmaceutical formulations using Fe (III) as reagent // Analytical Letters. 2011. Vol. 44. No. 1-3. P. 340-348. DOI:https://doi.org/10.1080/00032719.2010.500777.
23. Lima J. L. F. C. et al. Multi-pumping flow system for the spectrophotometric determination of dipyrone in pharmaceutical preparations // Journal of Pharmaceutical and Biomedical analysis. 2003. Vol. 32. No. 4-5. P. 1011-1017. DOI:https://doi.org/10.1016/S0731-7085(03)00203-6.
24. da Costa Lopes F.C. et al. Development and validation of methods using derivative spectro-photometry for determination of dipyrone in pharmaceutical formulations // International Journal of Pharmaceutical Sciences and Research. 2018. Vol. 9. No. 6. P. 2201-2210. DOI:https://doi.org/10.13040/IJPSR.0975-8232.9(6).2201-10.
25. Abdel-Hadyá Elsayed M. et al. Application of difference spectrophotometry to the determination of dipyrone // Analyst. 1979. Vol. 104. No. 1239. P. 568-572.
26. Marcolino-Júnior L.H. et al. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using ammonium molybdate as chromogenic reagent // Analytical Letters. 2005. Vol. 38. No. 14. P. 2315-2326. DOI:https://doi.org/10.1080/15265160500316351.
27. Ribeiro P. C. et al. Determination of dipirone 500 mg by spectrophotometry of molecular absorption-UV, marketed in drugs // International Journal of Advanced Engineering Research and Science. 2019. Vol. 6. No. 6. P. 720-724. DOI:https://doi.org/10.22161/ijaers.6.6.83.
28. Bonifácio V., Filho O., Marcolino-Júnior L. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using a solid-phase reactor with copper (II) phosphate // Central European Journal of Chemistry. 2013. Vol. 11. No. 11. P. 1830-1836. DOI:https://doi.org/10.2478/s11532-013-0312-6.
29. Salih E.S., Al-Sharook M.M. Spectrophotometric Assay of Dipyrone in Pharmaceutical Preparations Via Oxidative Coupling Reaction with m-Toluidine and Potassium Hexacyanoferrate (III) // Journal of Education and Science. 2008. Vol. 21. No. 2. P. 28-38. DOI:https://doi.org/10.33899/edusj.2008.51237.