Бийск, Алтайский край, Россия
Бийск, Алтайский край, Россия
Бийск, Алтайский край, Россия
Бийск, Алтайский край, Россия
Бийск, Алтайский край, Россия
The paper deals with the process of convective drying of materials using potatoes as an example at 60 C. To intensify the drying process, non-contact ultrasound with different acoustic pressure levels in the range 130-175 dB was applied. Ultrasonic drying at175 dB reduced the drying time of potatoes by 57.1%to compare with the convection drying. We observed a step change of drying speed during the initial phase (at high moisture content) at acoustic pressure level of 150 dB. It allows to predict the activation of dehydration mechanism without a phase change, i.e., by dispersing moisture from the surface of the material to be dried. To verify the dispersion mechanism, we captured water droplets with the immersion liquid slide. The number of dispersed droplets decreased along with decreasing of material moisture content. The optimum of acoustic pressure level is 160-165 dB range in terms of reduced drying time and energy consumption. Two drum-type dryer designs have been proposed to increase the mass of material being dried at the same time. Ultrasonic drying (160-165 dB) of diced potatoes by these units was 45-47% faster than convection drying.
acoustic pressure level, drying, dispersing, ultrasonic dryer, drying curve
1. Verboloz E.I., Ivanova M.A., Demchenko V.A., Fartukov S., Evona N.K. Ultrasound drying of rose hips: a process study. Tekhnika i tekhnologiya pishchevyh proizvodstv. 2020. Vol. 50, N 1. P. 79-86 (in Russian).
2. Gallego-Juarez J. A., Riera E., Blanco S. D. F., Rodriguez-Corral G., Acosta-Aparicio V. M., Blanco A. Application of High-Power Ultrasound for Dehydration of Vegetable: Processes and Devices. Drying Technology. 2007. Vol. 25(11). P. 1893–1901. DOI:https://doi.org/10.1080/07373930701677371
3. Fairbank H.V. Applying ultrasound to continuous drying process. Ultrasonic International I975 Conference Proceedings. Guildford, UK: IPC Science and Technology Press Ltd, 1975. P. 43-45.
4. Szadzińska J., Mierzwa D., Pawłowski A., Musielak G., Pashminehazar R., Kharaghani A. Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology. 2020. Vol. 38. Iss. 1-2. P. 93–107. URL: https://doi.org/10.1080/07373937.2019.1624565
5. Kowalski S. J. Ultrasound in wet materials subjected to drying: A modeling study. International Journal of Heat and Mass Transfer. 2015. Vol. 84. May. P. 998–1007. URL: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.086
6. Baslar M., Toker O.S., Karasu S., Tekin Z.H., Yildirim B.H. Ultrasonic applications for food dehydration. Handbook of Ultrasonics and Sonochemistry. 2016. P. 1247–1270. DOIhttps://doi.org/10.1007/978-981-287-470-2_64-1
7. Gallego-Juárez J.A., Rodriguez G., Acosta V., Riera E. Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochemistry. 2010. Vol. 17. N 6. P. 953–964. DOIhttps://doi.org/10.1016/j.ultsonch.2009.11.006
8. Bantle M., Eikevik T.M. A study of the energy efficiency of convective drying systems assisted by ultrasound in the production of clipfish. J. Clean. Prod. 2014. Vol. 65. P. 217–223. DOIhttps://doi.org/10.1016/j.jclepro.2013.07.016
9. Beck S.M., Sabarez H., Gaukel V., Knoerzer K. Enhancement of convective drying by application of airborne ultrasound – a response surface approach. Ultrason. Sonochem. 2014. Vol. 21. N 6. P. 2144–2150. URL: http://dx.doi.org/10.1016/j.ultsonch.2014.02.013
10. Rozenberg L. D. Physics and technology of powerful ultrasound. In 3 books / AS OF the USSR. Acoustic in-t. Moskow: Nauka, 1967-1970 (in Russian).
11. Rieara E., Gallego-Juarez J.A., Corral G.R., Aparicio V. M.A., Gallego E.A. Application of high-power ultrasound for drying vegetables. 2002. Oct. P. 143-148. URL: https://www.researchgate.net/publication/39397817_Application_of_high-power_ ultrasound_ for_ drying_vegetables
12. Liu Y., Sun Y., Yu H., Yin Y., Li X., Duan X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Drying Technol. 2017. Vol. 35. N 5. P. 564–576. URL: http://dx.doi.org/10.1080/07373937.2016.1193867
13. Schössler K., Jäger H., Knorr D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper J. Food Eng. 2012. Vol. 108. N 1. P. 103–110. DOIhttps://doi.org/10.1016/j.ifset.2012.05.010
14. Gallego-Juarez J.A., Rodriguez-Corra G., Galvez-Moraleda J.C., Yang T.S. A new high intensity ultrasonic technology for food dehydration. Drying Technology. 1999. Vol. 17(3). P. 597–608. URL: http://dx.doi.org/10.1080/07373939908917555
15. Khmelev V.N., Shalunov A.V., Nesterov V.A. Summation of high-frequency Langevin transducers vibrations for increasing of ultrasonic radiator power. Ultrasonics. 2021. Vol. 114. 106413.
16. Khmelev V.N., Shalunov A.V., Nesterov V.A. Ultrasonic transducer with increased exposure power and frequency up to 100 kHz. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2021. Vol. 68, Iss. 5. P. 1773-1782. DOIhttps://doi.org/10.1109/TUFFC.2020.3029159
17. Khmelev V.N., Shalunov A.V., Barsukov R.V., Abramenko D.S., LebedevA.N. Studies of ultrasonic dehydration efficiency. Journal of Zhejiang University SCIENCE A (Applied Physics & Engineering). 2011. Vol. 12. N 4. P. 247–354. DOIhttps://doi.org/10.1631/jzus.A1000155
18. Verboloz E.I., Nikolyuk O.I. The use of ultrasound in the process of drying pasta with protein supplements. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tekhnologij. 2017. Vol. 79, N 1(71). P. 50 54 (in Russian).
19. Yudin A.V., Verboloz E.I. Efficiency of drying of kiprei-tea with the use of ultrasound. Al'manah nauchnyh rabot molodyh uchenyh Universiteta ITMO: Materialy XLVI nauchnoj i uchebno-metodicheskoj konferencii. St. Petersburg: St. Petersburg National Research University of Information Technology, Mechanics and Optics, 2017. P. 332-335 (in Russian).
20. Marushchak A.S., Zhernosek S.V., Ol'shanskij V.I. Influence of acoustic vibrations of ultrasonic range on strength properties of textile materials in the processes of drying. Vestnik Vitebskogo gosudarstvennogo tekhnologicheskogo universiteta. 2019. N 2(37), P. 44–51 (in Russian).
21. Hmelev V.N., SHalunov A.V., Hmelev M.V., Nesterov V.A., Tertishnikov P.P., Cyganok S.N. Patent na PM RU 195247 U1. 2020 (in Russian).