Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
УДК 547.814.1 Производные бензпирана, не содержащие другого кольца в молекуле, кроме бензпирановой системы (хромоны и т.д.)
Исследованы закономерности образования и накопления диастереомерных 2-тио-1,2,3,4,4a,10b-гексагидро-5H-хромено[4,3-d]пиримидин-5-онов, образующихся в результате кислотно-катализируемой конденсации дигидропиримидин-2-тионов с резорцинами.
2-тио-1,2,3,4,4a,10b-гексагидро-5H-хромено[4,3-d]пиримидин-5-оны, кислотно-катализируемая конденсация, мониторинг
1. Kabanova M.V., Makarova E.S., Chirkova Z.V., Filimonov S.I. Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles // From Chemistry Towards Technоlogy Step-By-Step. 2021. Vol. 2, no. 1. Р. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111. URL: http://chemintech.ru/index.php/tor/2021tom2no1.
2. Abramov I.G., Karpov R.Z. Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile // From Chemistry Towards Technоlogy Step-By-Step. 2020. Vol. 1, no 1. P. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62. URL: http://chemintech.ru/index.php/tor/2020tom1n1.
3. Kotov A.D., Kunichkina A.S., Proskurina I.K. Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines // From Chemistry Towards Technоlogy Step-By-Step. 2021. Vol. 2, no. 4. P. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. URL: http://chemintech.ru/index.php/tor/2021-2-4.
4. Marinescu M. Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties // Molecules. 2021. Vol. 26, no. 19. P. 6022. DOI:https://doi.org/10.3390/molecules26196022. URL: https://www.mdpi.com/1420-3049/26/19/6022.
5. Bosica G., Cachia F., De Nittis R., Mariotti N. Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction // Molecules. 2021. Vol. 26, no. 12. P. 3753. DOI:https://doi.org/10.3390/molecules26123753. URL: https://www.mdpi.com/1420-3049/26/12/3753.
6. Santosh R. One-Pot Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives and Investigation of Their Antibacterial, Antioxidant, DNA-Binding and Voltammetric Characteristics // Chemistry Select. 2019. Vol. 4, no. 3. P. 990–996. DOI:https://doi.org/10.1002/slct.201803416. URL: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201803416.
7. Metsämuuronen S., Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce // Phytochem. Rev. 2019. Vol. 18, no. 3. P. 623-664. DOI:https://doi.org/10.1007/s11101-019-09630-2. URL: https://link.springer.com/article/10.1007/s11101-019-09630-2.
8. Quideau S., Deffieux D., Douat-Casassus C., Pouysègu L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis // Angew. Chem. 2011. Vol. 50, no. 3. P. 586–621. DOI:https://doi.org/10.1002/anie.201000044. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201000044.
9. Emami S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry // Eur. J. Med. Chem. 2015. Vol. 102. P. 611–630. DOI:https://doi.org/10.1016/j.ejmech.2015.08.033. URL: https://www.sciencedirect.com/science/article/pii/S0223523415302178.
10. Bhosle M.R., Wahul D.B., Bondle G.M., Sarkate A., Tiwari S.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2, 5-diones // Synth. Commun. 2018. Vol. 48, no. 16. P. 2046-2060. DOI:https://doi.org/10.1080/00397911.2018.1480042. URL: https://www.tandfonline.com/doi/abs/10.1080/00397911.2018.1480042.
11. Kumari S., Shakoor S.A., Khullar S., Mandal S.K., Sakhuja R. An unprecedented tandem synthesis of fluorescent coumarin-fused pyrimidines via copper-catalyzed cross-dehydrogenative C (sp3)–N bond coupling // Org. Biomol. Chem. 2018. Vol. 16, no. 17. P. 3220-3228. DOI:https://doi.org/10.1039/C8OB00586A. URL: https://pubs.rsc.org/en/content/articlelanding/2017/sc/c8ob00586a/unauth.
12. Patil R.B., Sawant S.D. Synthesis, docking studies and evaluation of antimicrobial and in vitro antiproliferative activity of 5H-chromeno[4,3-d]pyrimidin-2-amine derivatives // Int. J. Pharm. Pharm. Sci. 2015. Vol. 7, no. 2. P. 304-308. URL: https://innovareacademics.in/journals/index.php/ijpps/issue/ view/Vol7Issue2.
13. Rajanarendar E., Reddy M.N., Krishna S.R., Murthy K.R., Reddy Y.N., Rajam M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolylpyrimido[4,5-b]quinolines and isoxazolylchromeno[2,3-d]pyrimidin-4-ones // Europ. J. Med. Chem. 2012. Vol. 55. P. 273-283. DOI:https://doi.org/10.1016/j.ejmech.2012.07.029. URL: https://www.sciencedirect.com/science/article/pii/ S0223523412004552
14. Filimonov S.I., Chirkova Zh.V., Kabanova M.V., Makarova E.S., Shetnev A.A., Panova V.A., Suponitsky K.Yu. A Condensation of Biginelli Products with 1,3-Benzenediols: a Facile Access to Diastereomerically Pure Hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones // Chemistry Select. 2019. Vol. 4, no. 33. P. 9550–9555. DOI:https://doi.org/10.1002/slct.201901997. URL: https://chemistry-europe.onlinelibrary. wiley.com/doi/10.1002/slct.201901997