с 01.01.1974 по настоящее время
Ярославль, Ярославская область, Россия
Волгоград, Волгоградская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Волжский, Волгоградская область, Россия
УДК 544.3 Химическая термодинамика
Butadiene Nitrile Rubber (BNR) is a special purpose elastomer with an increased resistance to aliphatic hydrocarbon solvents, oils, and fuels. Depending on the monomer ratio of the butadiene-nitrile copolymers, their compatibility with different types of solvents and plasticisers varies considerably. In additional, BNRs with carboxyl, hydroxyl and hydrogenated BNRs are industrially available. The purpose of the study was to calculate the solubility parameters of different compositions of BNRs copolymers, hydrogenated BNRs, and rubbers with hydroxyl and carboxyl groups. We calculated the increments of the functional groups of copolymers under study and the molecular attraction by the Small constants. The calculations based on the processing of reference data on the enthalpies of evaporation and molar volume of aliphatic and aromatic hydrocarbons, nitriles, acids, alcohols, and esters. Also we used the increments obtained to calculate three dimensional solubility parameters of the copolymers as well as the dependencies of the change in Gibbs free energy at mixing on the solvent volume fraction for the two types of solvents.
butadiene nitrile rubbers, solubility parameters, group additivity method
1. Kligender, R.C. (2019) Handbook of Specialty Elastomers. Boca Raton: CRC Press.
2. Koshelev, F.F., Kornev, A.E. & Bukanov, A.M. (1978) General technology of rubber. 4-th ed., rev. and supplement. M.: Khimiya (in Russian).
3. Mandal, U.K. (2000) Ionic elastomer based on carboxylated nitrile rubber: infrared spectral analysis, Polymer International, 49(12), pp. 1653–1657. DOI: doi.org/10.1002/1097-0126(200012)49:12<1653::AID-PI586>3.0.CO;2-U.
4. Prochon, M., Przepiorkowska, A. & Zaborski, M. (2007) Keratin as a filler for carboxylated acrylonitrile-butadiene rubber XNBR, Journal of Applied Polymer Science, 106(6), pp. 3674–3687. DOI:https://doi.org/10.1002/app.26324.
5. Wang, J., Jia, H. Tang, Y., Ji, D., Sun, Y., Gong, X. & Ding, L. (2013) Enhancements of the mechanical proper-ties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide, Journal of Material Science, 48, pp. 1571–1577. DOI:https://doi.org/10.1007/s10853-012-6913-1.
6. Laskowska, A., Zaborski, M., Boiteux, G., Gain, O., Marzec, A. & Maniukiewicz, W. (2014) Ionic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite), eXPRESS Polymer Letters, 8, pp. 374–386. DOI:https://doi.org/10.3144/expresspolymlett.2014.42.
7. Gaca, M. & Zaborski, M. (2016) The properties of elastomers obtained with the use of carboxylated acrylonitrile-butadiene rubber and new crosslinking substances, Polimery, 61(1), pp. 31-38. DOI:https://doi.org/10.14314/polimery.2016.031.
8. Tripathi, G. & Srivastava, D. (2011) Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin, International Journal of Organic Chemistry, 1, pp. 105-112. DOI:https://doi.org/10.4236/ijoc.2011.13016.
9. Brzić, S.J., Jelisavac, L.N., Galović, J.R., Simić, D.M. & Petković, J.L. (2014) Viscoelastic properties of hydroxyl-terminated poly(butadiene)-based composite rocket propellants, Chemical Industry, 68(4), pp. 435 443. DOI:https://doi.org/10.2298/HEMIND130426067B.
10. Brzić, S., Ušćumlić, G., Milojković, A., Rodić, V. & Bogosavljević, M. (2015) Viscoelastic Properties of Carboxyl-Terminated (Butadiene-co-Acrylonitrile)-Based Composite Rocket Propellant Containing Tris(2,3 Epoxypropyl) Isocyanurate as Bonding Agen, Scientific Technical Review, 65(4), pp. 28-36. DOI:https://doi.org/10.5937/STR1504028B.
11. Brzić, S.J., Ušćumlić, G.S., Dimić, M.V., Tomić, M., Rodić, V.Ž. & Fidanovski, B.Z. (2016) Viscoelastic behaviour of carboxyl-terminated (butadiene-co-acrylonitrile)-based composite propellant binder containing polyglycidyl-type bonding agent, Chemical Industry, 70(5), pp. 547–556. DOI:https://doi.org/10.2298/HEMIND150918062B.
12. Ai, C., Li, J., Gong, G., Zhao, X. & Liu, P. (2018) Preparation of hydrogenated nitrile-butadiene rubber (H NBR) with controllable molecular weight with heterogeneous catalytic hydrogenation after degradation via olefin cross metathesis, Reactive and Functional Polymers, 129, pp. 53-57. DOI: doi.org/10.1016/j.reactfunctpolym.2017.12.016.
13. Yun, J., Zolfaghari, A. & Sane, S. (2022) Study of hydrogen sulfide effect on acrylonitrile butadiene rubber/hydrogenated acrylonitrile butadiene rubber for sealing application in oil and gas industry, Journal of Applied Polymer Science, 139(30), e52695. DOI: doi.org/10.1002/app.52695.
14. Van Krevelen, D.W. & Nijenhuis, K.Te. (2009) Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Amsterdam: Elsevier.
15. Baskin, I.I., Majidov, T.I. & Varnek, A.A. (2015) Introduction to Chemoinformatics. Part 3. Structure-property modeling. Kazan: Izdatel’stvo Kazanskogo universiteta (in Russian).
16. Solovyev, M.E. & Dmitriev, K.E. (2021) Computer modelling in chemistry. Yaroslavl: Izdat. dom YaGTU (in Russian).
17. Batov, D.V. (2021) Analysis, systematization and prediction of thermodynamic characteristics of organic compounds and their solutions based on additive-group method, From Chemistry Towards Technology Step-By-Step, 2(2), pp. 8-59 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-2 DOI:https://doi.org/10.52957/27821900_2021_02_8 (in Russian).
18. Ilyin, A.A. Sizov, E.A. Soloviev, M.E. & Mogilevich, M.M. (2000) Increments of enthalpies of organic com-pounds evaporation. Zhurnal obschey chimii, 70(7), pp. 1088-1091 (in Russian).
19. Korolev, G.V., Ilyin, A.A., Mogilevich, M.M., Chebunin, R.V. & Solovyev, M.E. (2003) Peculiarities of inter-molecular interactions in organic compounds with anomalously low boiling points, Zhurnal obschey chimii, 73(3), pp. 360-366 (in Russian).
20. Ilyin, A.A., Solovyev, M.E., Mogilevich, M.M., Semeykin, I.N. & Korolev, G.V. (2002) Modelling of associative structures of fluoroalkyl methacrylates, Visokomolekulyarnie soedineniya. Ser. B, 44(4), pp. 693-696 (in Rus-sian).
21. Lebedev, Y.A. & Miroshnichenko, E.A. (1981) Thermochemistry of vaporization of organic substances, heat of evaporation, sublimation and pressure of saturated steam. M.: Nauka (in Russian).
22. Mackay, D., Shiu, W.Y., Ma, K.-C. & Lee, S. C. (2006) Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Second Ed. Volumes I, III, IV. Boca Raton: CRC Press.
23. NIST Chemistry WebBook. NIST Standard Reference Database Number 69 [online]. Available at: https://webbook.nist.gov/chemistry/ Last update to data: 2022 (accessed 10.10.2022). DOI: https://doi.org/10.18434/T4D303.
24. Solovyev, M.E. (2012) Experimental and statistical methods in chemical engineering research using Open Source software. Yaroslavl: Izdatel’stvo YaGTU [online]. Available at: https://www.elibrary.ru/item.asp?id=45667592 (accessed 10.10.2022) (in Russian).
25. Small, P.A. (1953) Some factors affecting the solubility of polymers, Journal of Applied Chemistry, 3(2), pp. 71 80. doi.org/10.1002/jctb.5010030205.
26. Fedors, R.F. (1974) A method for estimating both the solubility parameters and molar volumes of liquids, Pol-ymer Engineering and Science, 14(2), pp. 147-154. DOI: doi.org/10.1002/pen.760140211.
27. Dmitriev, K.E. & Soloviev, M.E. (2022) Prediction of thermodynamic properties of fatty acids and their esters by additive-group contribution method, Matematika i estestvenniye nauki: teoriya i praktika: mezhvuzovskiy sbornik nauchnih trudov. Vol. 17. Yaroslavl: Izdat. dom YaGTU, pp. 136-142 (in Russian).
28. Solov’ev, M.E., Raukhvarger, A.B. & Irzhak, V.I. (2021) Simulation of local dynamics of intermolecular interactions in nitrile-butadiene copolymers with carboxyl and hydroxyl groups, Polymer Science. Series A, 63(4), pp. 435-443. DOI:https://doi.org/10.1134/S0965545X21040076.
29. Flory, P.J. (1953) Principles of Polymer Chemistry. NY, Ithaca: Cornell University Press.