Иваново, Ивановская область, Россия
The research expands possible aspects of technological application of gas discharges in the technology of treatment and modification of various materials. Chemically active plasma allows intensifying conventional chemical processes at the expense of a more effective use of energy supplied to the system. By this approach all stages of the kinetic scheme of interacting particles technology in the plasma-chemical reactor become determinative. We study the processes observed at the signal switching fronts at pulse discharge power supply. Indeed, this mode of discharge combustion enables to achieve more effective utilization of reagents used in plasma chemical etching of different materials. Also we made the complex analysis of reasons causing appearance of transients at the front of signal switching in the discharge with periodical current variation. Moreover, we consider the relaxation of heavy charged and neu-tral particles in chlorine plasma.
plasma, interaction, process, transients, chlorine, silicon
1. Raiser, J.P. (2009) Physics of gas discharge. Dolgoprudny: Izdat. dom «Intellekt» (in Russian).
2. Sitanov, D.V. & Pivovarenok, S.A. (2018) Kinetics of atomic recombination on silicon samples in chlorine plasma, Plasma Physics Reports, 44(8), pp. 713-722. DOI:https://doi.org/10.1134/S0367292118080085.
3. Stafford, L., Guha, J., Khare, R., Mattei, S., Boudreault, O., Clain, B. & Donnelly, V. M. (2010) Experimental and modeling study of O and Cl atoms surface recombination reactions in O2 and Cl2 plasmas, Pure Appl. Chem., 82(6), pp. 1301–1315. DOI:https://doi.org/10.1351/PAC-CON-09-11-02.
4. Sitanov. D.V., Efremov, A.M. & Svettsov, V.I. (1998) Dissociation of chlorine molecules in a glow discharge plasma in mixtures with argon, oxygen, and nitrogen, High Energy Chemistry, 32(2), pp. 123-126.
5. Pivovarenok, S.A., Murin, D.B. & Sitanov, D.V. (2021) Effect of a mixture’s composition on the electrophysical parameters and emission spectra of hydrogen chloride plasma with chlorine and helium, Russian Microelectronics. 50(1), pp. 39-44. DOI:https://doi.org/10.31857/S0544126920060095.
6. Efremov, A.M., Betelin, V.B., Kwon, K.Ho. & Snegirev, D.G. (2019) Plasma parameters and kinetics of active species in HBr + Cl2 + O2 gas mixture, ChemChemTech., 62(7), pp. 72-79. DOI:https://doi.org/10.6060/ivkkt.20196207.5947.
7. Sitanov, D.V. & Pivovarenok, S.A. (2018) Visualization of defects on the semiconductor surface using a dielectric barrier discharge, Russian Microelectronics, 47(1), pp. 34-39. DOI:https://doi.org/10.1134/S1063739718010067.
8. Brok, W.J.M., van Dijk, J., Bowden, M.D., van der Mullen, J.J.A.M. & Kroesen, G.M.W. (2003) A model study of propagation of the first ionization wave during breakdown in a straight tube containing argon, J. Phys. D: Appl. Phys., (36), 1967.
9. Shishpanov, A.I., Ionikh ,Y.Z., Meshchanov, A.V. & Dyatko, N.A. (2014) Memory effect in the ignition of a low-pressure glow discharge in nitrogen in a long discharge tube, Plasma Physics Reports, 40(6), pp. 467-480. DOI:https://doi.org/10.1134/S1063780X1406005.
10. Dyatko, N.A., Ionikh ,Y.Z. & Meshchanov, A.V. (2021) Estimation of plasma parameters in a pre-breakdown ionization wave at the glow discharge ignition in argon, Plasma Sources Science and Technology, 30(5), 055015, DOI:https://doi.org/10.1088/1361-6595/abda9e.
11. Sitanov, D.V. (2021) The role of chemical processes in the technological treatment of gallium arsenide under conditions of low-temperature non-equilibrium plasma reduced pressure in chlorine, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 85-92. DOI:https://doi.org/10.52957/27821900_2021_04_85. Available at: http://chemintech.ru/index.php/tor/2021-2-4
12. Sitanov, D.V., Pivovarenok, S.A. & Murin, D.B. (2022) The importance of taking into account the heterogeneous recombination of atoms when studying the kinetics of copper etching in chlorine plasma, High Temperature, 60(2), pp. 146–152. DOI:https://doi.org/10.1134/S0018151X21050187.
13. Efremov, A.M., Svettsov, V.I. & Sitanov, D.V. (2008) The parameters of plasma and the kinetics of generation and loss of active particles under conditions of discharge in chlorine, High Temperature, 46(1), pp. 11-18. DOI:https://doi.org/10.1134/s10740-008-1003-4.
14. Starodubtsev, M.V. & Kraft, K. (2012) Laboratory simulation of interaction of unsteady electron beams with magnetoactive plasma, Izvestia vuzov. Radiophysics, LV(10-11), pp. 683-697 (in Russian).
15. Bogdanov, E.A., Kudryavtsev, A.A. & Tsendin, L.D. (2001) Evolution of the density profiles and flows of charged particles during the diffusive decay of an electronegative gas plasma, Technical Physics, 46(4), pp. 404 410. DOI:https://doi.org/10.1134/1.1365462.