EFFECT OF CHEMICAL MODIFICATION OF COTTON CELLULOSE BY ANTHRANILIC ACID ON THE SORPTION OF CU(II) AND FE(II) IONS
Аннотация и ключевые слова
Аннотация (русский):
The authors modified cotton cellulose with anthranilic acid to obtain a new sorbent capable of efficient extraction of heavy metal ions from aqueous solutions. We conducted the modification in two stages: at the first stage, we obtained dialdehyde cellulose by oxidation of cellulose with sodium metaperiodate; at the second stage, we treated dialdehyde cellulose with anthranilic acid to obtain a ready-made sorbent. The authors determined the optimum conditions for modifying cotton cellulose to achieve maximum sorption of iron(II) and copper(II) ions. We studied the equilibrium-kinetic characteristics of the original and modified cotton cellulose. Also, we have processed the results of the kinetic experiment within the framework of pseudo-first- and pseudo-second-order kinetics models. We selected sorption isotherms, processed them within the framework of the Langmuir model, and determined the values of the ultimate sorption capacity (A∞). The modification of cotton cellulose enables to increase its sorption capacity significantly. According to the results, the A∞ of the modified sorbent is about 4-5 times higher than the ultimate sorption capacity of native cotton cellulose to Cu(II) and Fe(II) ions. In contrast, we obtained and compared the IR spectra of anthranilic acid-modified cellulose and native cellulose. Additionally, we obtained SEM images of the modified sorbent and the native cotton cellulose surface structure.

Ключевые слова:
cotton cellulose, modification, anthranilic acid, sorption, ions Cu(II) and Fe(II)
Список литературы

1. Humelnicu, D., Lazar, M.M., Ignat, M., Dinu, I.A., Dragan, E.S. & Dinu, M.V. (2019) Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores, J. Haz. Mat., 381, 120980 [online]. Available at: https://doi.org/10.1016/j.jhazmat.2019.120980

2. Yadav, S., Yadav, A., Bagotia, N., Sharma, A.K. & Kumar, S. (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater, A review Journal of Water Process Engineering, 42, 102148 [online]. Available at: https://doi.org/10.1016/j.jwpe.2021.102148

3. Agarwal, A., Upadhyay, U., Sreedhar, I., Singh, S.A. & Patel, C.M. (2020) A review on valorization of biomass in heavy metal removal from wastewater, J. Water Proc. Eng., 38, 101602 [online]. Available at: https://doi.org/10.1016/j.jwpe.2020.101602

4. Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A. & Vukelic, N. (2019) Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater, Journal of Industrial and Engineering Chemistry, 75, pp. 246–252 [online]. Available at: https://doi.org/10.1016/j.jiec.2019.03.031

5. Prokof'ev, V.Y. & Gordina, N.E. (2013) A study of thermal treatment and hydrothermal crystallization stages in production of granulated NAA zeolite from mechanically activated metakaolin, Zhurnal prikladnoj khimii, 86(3), pp. 332-338 (in Russian).

6. Prokof'ev, V.Yu., Gordina, N.E. & Zhidkova, A.B. (2011) Synthesis of granulated zeolites with NAA structure from kaolin, Izvestija vuzov. Khimija i khimicheskaja tehnologija, 54(12), pp. 77-80 (in Russian).

7. Gordina, N.E., Prokof’ev, V.Y., Hmylova, O.E. & Kul’pina, Y.N. (2017) Effect of ultrasound on the thermal behavior of the mixtures for the LTA zeolite synthesis based on metakaolin, Journal of Thermal Analysis and Calorimetry, 129(3), pp.1415-1427.

8. Saavedra, M.I., Miñarro, M.D., Angosto, J.M. & Fernández-López, J.A. (2019) Reuse potential of residues of artichoke (Cynara scolymus L.) from industrial canning processing as sorbent of heavy metals in multimetallic effluents, Industrial Crops & Products, 141, 111751 [online]. Available at: https://doi.org/10.1016/j.indcrop.2019.111751

9. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Kim, H.Y. & Joshi, M.K. (2021) Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9(4), 105688 [online]. Available at: https://doi.org/10.1016/j.jece.2021.105688

10. Nikiforova, T.E., Kozlov, V.A., Rodionova, M.V. & Modina, E.A. (2009) Sorption of zinc ions by products containing cellulose and protein components, Izvestija vuzov. Himija i himicheskaja tehnologija, 52(3), pp. 27 31 (in Russian)

11. Nazaripour, M., Reshadi, M.A.M., Mirbagheri, S.A., Nazaripour, M. & Bazargan, A. (2021) Research trends of heavy metal removal from aqueous environments, Journal of Environmental Management, 287, 112322 [online]. Available at: https://doi.org/10.1016/j.jenvman.2021.112322

12. Kozlov, V.A., Nikiforova, T.E., Loginova, V.A. & Koifman, O.I. (2015) Mechanism of protodesorption – exchange of heavy metal cations for protons in a heterophase system of H2O-H2SO4-MSO4 – cellulose sorbent, Journal of Hazardous Materials, 299, pp. 725-732. DOI:https://doi.org/10.1016/j.jhazmat.2015.08.004.

13. Singha, B. & Das, S.K. (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids and Surfaces B: Biointerfaces, 107, pp. 97–106 [online]. Available at: http://dx.doi.org/10.1016/j.colsurfb.2013.01.060

14. Nikiforova, T.E. & Kozlov, V.A. (2012) Comparison of models of copper (II) and nickel (II) cations sorption from aqueous solutions by cotton cellulose, Zhurnal fizicheskoj khimii, 86(10), pp. 1724-1729 (in Russian).

15. Nikiforova, T.E., Kozlov, V.A. & Islyaikin, M.K. (2012) Acid-base interactions and complex formation while recovering copper(ii) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone, Zhurnal fizicheskoj khimii, 86(12), pp. 1974-1984 (in Russian).

16. Nikiforova, T.E., Kozlov, V.A. & Islyaikin, M.K. (2012) Acid-base interactions and complex formation while recovering copper(ii) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone, Russian Journal of Physical Chemistry, 86(12), pp. 1974-1984.

17. Beaugeard, V., Muller, J., Graillot, A., Ding, X., Robin, J.-J. & Monge, S. (2020) Acidic polymeric sorbents for the removal of metallic pollution in water: A review, Reactive and Functional Polymers, 152(3), 104599 [online]. Available at: https://doi.org/10.1016/j.reactfunctpolym.2020.104599

18. Nikiforova, T.E., Kozlov, V.A. & Sofronov, A.R. (2023) Effect of chemical modification of cotton cellulose by aminoacetic acid on the sorption of Cu(II) and Fe(II) ions, From Chemistry Towards Technology Step-By-Step, 4(1), pp. 32-42 [online]. Available at: http://chemintech.ru/index.php/tor/2023-4-1 (in Russian).

19. Klemm, D., Philipp, B., Heinze, D., Heinze, U. & Wagenknecht, W. (1998) Comprehensive cellulose chemistry. Vol. 1: Fundamentals and Analytical Methods. Wiley-WCH, Weinheim, Germany.

20. Kokotov, Yu.A. & Pasechnik, V.A. (1970) Equilibrium and kinetics of ion exchange. L.: Khimiya (in Russian).

21. Ahnazarova, S.L. & Kafarov, V.V. (1985) Methods of experiment optimisation in chemical technology. Moscow: Vysshaya Shkola (in Russian).

Войти или Создать
* Забыли пароль?