Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Осуществлён процесс ароматического нуклеофильного замещения в 2-хлорнитробензоле и 2,4-дихлор-1,5-динитробензоле в реакторе для синтеза Monowave 50. Установлено ускорение реакций субстратов с азагетероциклическими соединениями (пиридином или индолом) в герметично закрытых сосудах.
2-хлорнитробензол, 2,4-дихлор-1,5-динитробензол, азагетероциклы, реактор Monowave 50, ароматическое нуклеофильное замещение
1. Xu H., Liu W.-Q., Fan L.-L., Chen Y., Yang L.-M., Lv L., Zheng Y.-T. Synthesis and HIV-1 Integrase Inhibition Activity of some N-Arylindoles // Chem. Pharm. Bull. 2008. Vol. 56, iss. 5. P. 720-722. DOI:https://doi.org/10.1248/cpb.56.720. URL: https://www.jstage.jst.go.jp/article/cpb/56/5/56_5_720/_article
2. Desplat V., Moreau S., Belisle-Fabre S., Thiolat D., Uranga J., Lucas R., de Moor L., Massip S., Jarry C., Mossalayi D.M., Sonnet P., Deleris G., Guillon J. Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives // J. Enzyme Inhib. Med. Chem. 2011. Vol. 26(5). P. 657-667. DOI:https://doi.org/10.3109/14756366.2010.548326. URL: https://www.tandfonline.com/doi/full/10.3109/14756366.2010.548326
3. Xu H., Fan L-L. Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro // Eur. J. Med. Chem. 2011. Vol. 46(1). P. 364-369. DOI:https://doi.org/10.1016/j.ejmech.2010.10.022. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523410007622
4. Yan Y., Liu Z., Zhang J., Xu R., Hu X., Liu G. A reverse method for diversity introduction of benzimidazole to synthesize H+/K+-ATP enzyme inhibitors // Bioorganic Med. Chem. Lett. 2011. Vol. 21(14). P. 4189-4192. DOI:https://doi.org/10.1016/j.bmcl.2011.05.080. URL: https://www.sciencedirect.com/science/article/pii/S0960894X11007098
5. Tokay E., Güngör T., Hacıoğlu N., Önder F.C., Gülhan Ü.G., Tok T.T., Çelik A., Ay M., Köçkar F. Prodrugs for nitroreductase-based cancer therapy-3: Antitumor activity of the novel dinitroaniline prodrugs/Ssap-NtrB enzyme suicide gene system: Synthesis, in vitro and in silico evaluation in prostate cancer // Eur. J. Med. Chem. 2020. Vol. 187. P. 111937-111957. DOI:https://doi.org/10.1016/j.ejmech.2019.111937. URL: https://www.sciencedirect.com/science/article/pii/S022352341931089X
6. Kumar K., Awasthi D., Lee S.-Y., Cummings J.E., Knudson S.E., Slayden R.A., Ojima I. Benzimidazole-based antibacterial agents against // Francisella tularensis // Bioorganic Med. Chem. 2013. Vol. 21, iss. 11. P. 3318-3326. DOI:https://doi.org/10.1016/j.bmc.2013.02.059. URL: https://www.sciencedirect.com/science/article/pii/S0968089613002605
7. Kumar K., Awasthi D., Lee S.-Y., Zanardi I., Ruzsicska B., Knudson S., Tonge P.J., Slayden R.A., Ojima I. Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, as a New Class of Antitubercular Agents // J. Med. Chem. 2011. Vol. 54(1). P. 374-381. DOI:https://doi.org/10.1021/jm1012006. URL: https://pubs.acs.org/doi/10.1021/jm1012006
8. Awasthi D., Kumar K., Knudson S., Slayden R.A., Ojima I. SAR Studies on TrisubstitutedBenzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents // J. Med. Chem. 2013. Vol. 56(23). P. 9756-9770. DOI:https://doi.org/10.1021/jm401468w. URL: https://pubs.acs.org/doi/10.1021/jm401468w
9. Gong Y., Karakaya S.S., Guo X., Zheng P., Gold B., Ma Y., Little D., Roberts J., Warrier T., Jiang X., Pingle M., Nathan C.F., Liu G. Benzimidazole-based compounds kill Mycobacterium tuberculosis // Eur. J. Med. Chem. 2014. Vol. 75. P. 336-353. DOI:https://doi.org/10.1016/j.ejmech.2014.01.039. URL: https://www.sciencedirect.com/science/article/pii/S0223523414000853
10. Zhong Q.-F., Liu R., Liu G. Structure–activity relationship studies on quinoxalin-2(1H)-one derivatives containing thiazol-2-amine against hepatitis C virus leading to the discovery of BH6870 // Mol. Divers. 2015. Vol. 19(4). P. 829 853. DOI:https://doi.org/10.1007/s11030-015-9610-6. URL: https://link.springer.com/article/10.1007/s11030-015-9610-6
11. Patent N 2011/0257146 A1 US. Method of treating KCNQ related disorders using organozinc compounds / Li M., Sun H., Xiong Q. Publ. 2011. URL: https://patents.google.com/patent/US20110257146A1/en
12. Ibata T., Isogami Y., Toyoda J. Aromatic Nucleophilic Substitution of Halobenzenes with Amines under High Pressure // Bull. Chem. Soc. Jpn. 1991. Vol. 64(1). P. 42-49. DOI:https://doi.org/10.1246/bcsj.64.42. URL: https://www.journal.csj.jp/doi/10.1246/bcsj.64.42
13. Lengyel L., Gyóllai V., Nagy T., Dormán G., Terleczky P., Háda V., Nógrádi K., Sebők F., Ürge L., Darvas F. Stepwise aromatic nucleophilic substitution in continuous flow. Synthesis of an unsymmetrically substituted 3,5-diamino-benzonitrile library // Mol. Divers. 2011. Vol. 15(3). P. 631-638. DOI:https://doi.org/10.1007/s11030-010-9300-3. URL: https://link.springer.com/article/10.1007/s11030-010-9300-3
14. Petersen T.P., Larsen A.F., Ritzen A., Ulven T. Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF // J. Org. Chem. 2013. Vol. 78(8). P. 4190-4195. DOI:https://doi.org/10.1021/jo400390t. URL: https://pubs.acs.org/doi/10.1021/jo400390t
15. Kocienski P. Conductively Heated Sealed-Vessel Reactor: Synthesis of Olanzapine // Synfacts. 2017. Vol. 13(03). P. 0231. DOI:https://doi.org/10.1055/s-0036-1590077. URL: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0036-1590077
16. Synthesis reactor: Monowave 50 // Anton Paar: [site]. URL: https://www.anton-paar.com/corp-en/products/details/synthesis-reactor-monowave-50/
17. Abramov I.G., Baklagin V.L., Makarova E.S., Kleikova D.E. Nitrogen-containing heterocyclic O-, and S-nucleophiles in reactions with 4-nitrophthalonitrile and 4-bromo-5-nitrophthalonitrile // From Chemistry Towards Technology Step-Вy-Step. 2021. Vol. 2, no. 4. P. 93-99. DOI:https://doi.org/10.52957/27821900_2021_04_93. URL: http://chemintech.ru/index.php/tor/2021-2-4
18. Vitaku E., Smith D.T., Njardarson J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals // J. Med. Chem. 2014. Vol. 57, iss. 24. P. 10257-10274. DOI:https://doi.org/10.1021/jm501100b. URL: https://pubs.acs.org/doi/10.1021/jm501100b
19. Begunov R.S., Sokolov A.A., Filimonov S.I. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen // Rus. J. Org. Chem. 2020. Vol. 56. P. 1383-1391. DOI:https://doi.org/10.1134/S1070428020080084. URL: https://link.springer.com/article/10.1134/S1070428020080084
20. Begunov R.S., ZaitsevaYu.V., Sokolov A.A., Egorov D.O., Filimonov S.I. Synthesis and Antibacterial Activity of 1,2,3,4-Tetrahydro- and Pyrido[1,2-a]Benzimidazoles // Pharm. Chem. J. 2022. Vol. 56, no. 1. P. 22 28. DOI:https://doi.org/10.1007/s11094-022-02596-0. URL: https://link.springer.com/article/10.1007/s11094-022-02596-0
21. Kumar S., Ritika. A brief review of the biological potential of indole derivatives // Future Journal of Pharmaceutical Sciences. 2020. Vol. 6. P. 121-140. DOI:https://doi.org/10.1186/s43094-020-00141-y. URL: https://fjps.springeropen.com/articles/10.1186/s43094-020-00141-y
22. Teraiya N., Agrawal K., Patel T.M., Patel A., Patel S., Shah U., Shah S., Rathod K., Patel K. A Review of the Therapeutic Importance of Indole Scaffold in Drug Discovery // Current Drug Discovery Technologies. 2023. Vol. 20(6). Article ID: e050523216584. DOI:https://doi.org/10.2174/1570163820666230505120553. URL: https://www.eurekaselect.com/article/131536
23. Badigenchala S., Rajechkumar V., Sekar G. A Iodine mediated intramolecular C2-amidative cyclization of indoles: a facile access to indole fused tetracycles // Org. Biomol. Chem. 2016. Vol. 14(7). P. 2297-2305. DOI:https://doi.org/10.1039/C5OB02449H. URL: https://pubs.rsc.org/en/content/articlelanding/2016/ob/c5ob02449h