сотрудник
Ярославль, Ярославская область, Россия
аспирант
Ярославль, Ярославская область, Россия
аспирант с 01.01.2023 по настоящее время
Ярославский государственный технический университет
студент с 01.01.2018 по 01.01.2023
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
студент
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
УДК 547-327 Амиды. Имиды. Амидины. Гидроксамовые кислоты. Другие замещения азотом в карбоксильной группе
Проведено исследование аминолиза (4R*,4aS*,10bR*)-хромено[4,3-d]пиримидин-2,5-дионов. Установлено, что реакция раскрытия лактонового цикла возможна только при обработке хроманов гидразингидратом.
пиримидиноны, гексагидрохромено[4,3-d]пиримидиноны, гидразингидрат, карбогидразиды
1. Le Goff G., Ouazzani J. Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis // Bioorg. Med. Chem. 2014. Vol. 22, no. 23. P. 6529–6544. DOI:https://doi.org/10.1016/j.bmc.2014.10.011. URL: https://www.sciencedirect.com/science/article/abs/pii/S096808961400724X
2. Taguchi A., Nishiguchi S., Shiozuka M., Nomoto T., Ina M., Nojima S., Matsuda R., Nonomura Y., Kiso Y., Yamazaki Y., Yakushiji F., Hayashi Y. Negamycin analogue with readthrough-promoting activity as a potential drug candidate for Duchenne muscular dystrophy // ACS Med. Chem. Lett. 2012. Vol. 3, no. 2. P. 118–122. DOI:https://doi.org/10.1021/ml200245t. URL: https://pubs.acs.org/doi/abs/10.1021/ml200245t
3. Bordoloi M., Kotoky R., Mahanta J.J., Sarma T.C., Kanjilal P.B. Anti-genotoxic hydrazide from Crinum defixum // Eur. J. Med. Chem. 2009. Vol. 44, no. 6. P. 2754–2757. DOI:https://doi.org/10.1016/j.ejmech.2008.09.041. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523408004601
4. Liu J.T., Yu J.C., Jiang H.M., Zhang L.Y., Zhao X.J., Fan S.D. Crystal structure and properties of the carboxylic acid derivatives of Schizonpeta mulifida // Chin. J. Chem. 2008. Vol. 26, no. 6. P. 1129–1132. DOI:https://doi.org/10.1002/cjoc.200890201. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cjoc.200890201
5. Masunari A., Tavares L.C. A new class of nifuroxazide analogues: synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus // Bioorg. Med. Chem. 2007. Vol. 15, no. 12. P. 4229–4236. DOI:https://doi.org/10.1016/j.bmc.2007.03.068. URL: https://www.sciencedirect.com/science/article/abs/pii/-S0968089607002684
6. Loncle C., Brunel J.M., Vidal N., Dherbomez M., Letourneux Y. Synthesis and antifungal activity of cholesterol-hydrazone derivatives // Eur. J. Med. Chem. 2004. Vol. 39, no. 12. P. 1067–1071. DOI:https://doi.org/10.1016/j.ejmech.2004.07.005. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523404001564
7. Tapanyiğit O., Demirkol O., Güler E., Erşatır M., Çam M.E., Giray E.S. Synthesis and investigation of anti inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives // Arab. J. Chem. 2020. Vol. 13, no. 12. P. 9105–9117. DOI:https://doi.org/10.1016/j.arabjc.2020.10.034. URL: https://www.sciencedirect.com/science/article/pii/S1878535220304408
8. Andrews B., Komathi K., Mohan S. Synthesis and comparing the antibacterial activities of pyrimidine derivatives // J. Chem. Sci. 2017. Vol. 129, no. 3. P. 335–341. DOI:https://doi.org/10.1007/s12039-017-1228-z. URL: https://link.springer.com/article/10.1007/s12039-017-1228-z
9. Shcherbakov K.V., Burgart Y.V., Saloutin V.I. Transformations of 3-(1-aminoethylidene)-5,6,7,8-tetrafluorobenzopyran-2,4-dione with hydrazines // Heterocycles. 2009. Vol. 78, no. 2. P. 347–356. DOI:https://doi.org/10.3987/COM-08-11495.
10. Yatcherla S.R., Islam A., Dussa N., Bollikolla H.B. Synthesis, characterization and antibacterial activity of some new 3-(3-(trifluoromethyl)-phenyl)-3-(2-hydroxy-5-methylphenyl)-propanehydrazones // Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2015. Vol. 54B, no. 9. P. 1162–1167. URL: https://nopr.niscpr.res.in/handle/-123456789/32270
11. Dang-I A.Y., Huang T., Mehwish N., Dou X., Yang L., Mukwaya V., Xing C., Lin S., Feng C.-L. Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives // ACS Appl. Bio Mater. 2020. Vol. 3, no. 4. P. 2295–2304. DOI:https://doi.org/10.1021/acsabm.0c00075. URL: https://pubs.acs.org/doi/abs/10.1021/acsabm.0c00075
12. Ergenc N., Günay N.S., Demirdamar R. Synthesis and antidepressant evaluation of new 3-phenyl-5-sulfonamidoindole derivatives // Eur. J. Med. Chem. 1998. Vol. 33, no. 2. P. 143–148. DOI:https://doi.org/10.1016/S0223-5234(98)80039-1. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523498800391
13. Macedo D., Filho A.J.M.C., Soares de Sousa C.N., Quevedo J., Barichello T., Junior H.V.N., Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness // J. Affective Disord. 2017. Vol. 208. P. 22–32. DOI:https://doi.org/10.1016/j.jad.2016.09.012. URL: https://www.sciencedirect.com/science/article/abs/pii/S0165032716308813
14. Verma G., Marella A., Shaquiquzzaman M., Akhtar M., Ali M.R., Alam M.M. A review exploring biological activities of hydrazones // J. Pharm. Bioall. Sci. 2014. Vol. 6, no. 2. P. 69–80. DOI:https://doi.org/10.4103/0975-7406.129170. URL: https://pubmed.ncbi.nlm.nih.gov/24741273
15. Машковский М.Д. Лекарственные средства. 6-е изд., перераб и доп. М.: Новая волна, 2019. 1216 с.
16. Atta A., Fahmy S., Rizk O., Sriram D., Mahran M.A., Labouta I.M. Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents // Bioorg. Chem. 2018. Vol. 80. P. 721 732. DOI:https://doi.org/10.1016/j.bioorg.2018.07.028. URL: https://www.sciencedirect.com/science/article/abs/pii/-S0045206818305686
17. Villamizar-Mogotocoro A.F., Vargas-Méndez L.Y., Kouznetsov V.V. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis // Eur. J. Pharm. Sci. 2020. Vol. 51, no. 5. P. 1130–1164. DOI:https://doi.org/10.1016/j.ejps.2020.105374. URL: https://www.sciencedirect.com/science/article/abs/pii/S0928098720301639
18. Torosyan S.A., Nuriakhmetova Z.F., Gimalova F.A., Egorov V.A., Miftakhov M.S. 4H-Thieno[3,2-b]pyrrole-5-carbohydrazides and Their Derivatives // Russ. J. Org. Chem. 2020. Vol. 56, no. 9. P. 1545–1549. DOI:https://doi.org/10.1134/S1070428020090079. URL: https://link.springer.com/article/10.1134/S1070428020090079
19. Bijev A. New heterocyclic hydrazones in the search for antitubercular agents: Synthesis and in vitro evaluations // Lett. Drug. Des. Discov. 2006. Vol. 3, no. 7. P. 506–512. DOI:https://doi.org/10.2174/157018006778194790. URL: https://www.ingentaconnect.com/content/ben/lddd/2006/00000003/00000007/art00010
20. Paprocka R., Wiese- Szadkowska M., Helmin-Basa A., Mazur L., Kutkowska J., Michałkiewicz J., Modzelewska-Banachiewicz B., Pazderski L. Synthesis and evaluation of new amidrazone-derived hydrazides as a potential anti-inflammatory agents // Monatsh. Chem. 2018. Vol. 149, no. 8. P. 1493–1500. DOI:https://doi.org/10.1007/s00706-018-2197-8. URL: https://link.springer.com/article/10.1007/s00706-018-2197-8
21. Todeschini A.R., de Miranda A.L.P., da Silva K.C.M., Parrini S.C., Barreiro E.J. Synthesis and evaluation of analgesic, anti-inflammatory and antiplatelet properties of new 2-pyridylarylhydrazone derivatives // Eur. J. Med. Chem. 1998. Vol. 33, no. 3. P. 189–199. DOI:https://doi.org/10.1016/S0223-5234(98)80008-1. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523498800081
22. Khodov I.A., Efimov S.V., Klochkov V.V., Alper G.A., Batista de Carvalho L.A.E. Determination of preferred conformations of ibuprofen in chloroform by 2D NOE spectroscopy // Eur. J. Pharm. Sci. 2014. Vol. 65. P. 65–73. DOI:https://doi.org/10.1016/j.ejps.2014.08.005. URL: https://www.sciencedirect.com/science/article/abs/pii/S0928098714003145
23. Checker R., Sharma D., Sandur S.K., Subrahmanyam G., Krishnan S., Poduval T.B., Sainis K.B. Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols // J. Cell. Biochem. 2010. Vol. 110, no. 5. P. 1082–1093. DOI:https://doi.org/10.1002/jcb.22620. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.22620
24. Hruskova K., Potuckova E., Hergeselova T., Liptakova L., Haskova P., Mingas P., Kovarikova P., Simunek T., Vavrova K. Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications // Eur. J. Med. Chem. 2016. Vol. 120. P. 97–110. DOI:https://doi.org/10.1016/j.ejmech.2016.05.015. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523416303944
25. Taguchi A., Hamada K., Kotake M., Shiozuka M., Nakaminami H., Pillaiyar T., Takayama K., Yakushiji F., Noguchi N., Usui T., Matsuda R., Hayashi Y. Discovery of natural products possessing selective eukaryotic readthrough activity: 3-epi-deoxynegamycin and its leucine adduct // Chem. Med. Chem. 2014. Vol. 9, no. 10. P. 2233–2237. DOI:https://doi.org/10.1002/cmdc.201402208. URL: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.201402208
26. Roupas P., Keogh J., Noakes M., Margetts C., Taylor P. Mushrooms and agaritine: A mini-review // J. Funct. Foods. 2010. Vol. 2, no. 2. P. 91–98. DOI:https://doi.org/10.1016/j.jff.2010.04.003. URL: https://www.sciencedirect.com/science/article/abs/pii/S1756464610000241
27. Uryadova A.M., Makarova E.S., Filimonov, S.I. Diastereoselective synthesis of chromeno[4,3-d]pyrim-idines // From Chemistry Towards Technology Step-By-Step. 2023. Vol. 4, no. 2. P. 66–71. URL: http://chemintech.ru/index.php/tor/2023-4-2
28. Makarova E.S., Kabanova M.V., Danilova A.S., Filimonov S. I., Smirnova E. A., Shetnev A. A. Synthesis and properties of substituted 2-thioxohexahydropyrimidine-5-carbohydrazides // Russ. Chem. Bull. 2021. Vol. 70, no. 7. P. 1377–1382. DOI:https://doi.org/10.1007/s11172-021-3226-z. URL: https://link.springer.com/article/10.1007/s11172-021-3226-z
29. Makarova E.S., Kabanova M.V., Filimonov S.I., Shetnev A.A., Suponitsky K.Yu. Synthesis of substituted hexahydro-2H-chromeno[4,3-d]pyrimidine-2,5-diones and their modification at the hydroxy group // Russ. Chem. Bull. 2022. Vol. 71, no. 5. P. 1034–1042. DOI:https://doi.org/10.1007/s11172-022-3505-3. URL: https://link.springer.com/article/10.1007/s11172-022-3505-3/