SYNTHESIS AND STUDY OF THE BIOLOGICAL ACTIVITY OF SPIROCARBON AND ITS COMPLEXES WITH CATIONS OF TRANSITION ELEMENTS
Аннотация и ключевые слова
Аннотация (русский):
The synthesis of the ligand – spirocarbon (4,4,10,10-tetramethyl-1,3,7,9-tetraazaspiro[5.5]undecane-2,8-dione) – and its coordination compounds with transition metal cations (Co2+, Cd2+, La3+, Cu2+, Zn2+, Mn2+) has been conducted. The formation of the coordination compounds was confirmed by IR and UV spectroscopy. The electronic spectra of the complexes recorded a bathochromic shift of the band corresponding to the ligand along and the appearance of new absorption maxima in the long-wavelength region. According to molecular docking results, the identified biological target - α-synuclein - binds to the ligand (spirocarbon) via hydrogen bonds between the oxygen and hydrogen atoms of the amide group of 4,4,10,10-tetramethyl-1,3,7,9-tetraazaspiro[5.5]undecane-2,8-dione and the hydrogen and oxygen atoms of the amino acid residues of the protein. The dependence of the spirocarbon complexes lipophilicity on the pH of the medium was investigated.

Ключевые слова:
spirocarbon, IR spectroscopy, electronic spectroscopy, transition metals, complexation, PASS online, molecular docking
Список литературы

1. Weinschenk A.U. Condensation von Aceton mit Harnstoff. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2185-2187.

2. Zigeuner G., Fuchs E., Brunetti H. Über Heterocyclen, 8. Mitt.: Über 6,6′-Spirobis-(2-oxo-bzw. 2-thionohexa-hydropyrimidine). Monatsh. Chem., 1966, 97, 36-42. DOI:https://doi.org/10.1007/BF00905481.

3. Alam M., Ahmad M., Rasheed A., Ahmad A. Biopharmaceutical studies of spirobishexahydropyrimidine. Indian J. Exp. Biol., 1992, 30(12), 1181-1183.

4. Dudok K.P., Fedorovych A.M., Dudok T.G., Rechytskyi O.N., Yeresko V.A., Shkavoliak A.V., Sibirna N.O. Influence of spirocarbon and pyrrolopyrimidinedione derivatives on physicochemical characteristics of ligand forms of hemoglobin in vitro. Studia biologica, 2009, 3(2), 23-34.

5. Starykovych L.S., Starykovych M.A., Rechytskyi A.N., Yeresko V.A., Kosiak T.Yu., Sibirna N.A. Study of the influence of spirocarbon and pyrrolopyrimidinedione derivatives on leukemia cells. Studia biologica, 2009, 3(2), 93-98.

6. Dudok K.P., Starykovych M.A., Rechytskyi A.N., Shkavoliak A.V., Sibirna N.A. Role of pyrrolopyrimidinedione derivatives in regulation of physicochemical characteristics of hemoglobin and activity of individual enzymes of antioxidant defense of human blood in vitro. Visnyk of the Lviv University. Series Biology, 2012, 60, 126-136.

7. Musatov A.G., Semyashkina A.A., Dashevskiy R.F. Factors for optimizing the formation of plant productivity and grain quality of spring barley and oats. Khranenie i pererabotka zerna [Storage and Processing of Grain], 2007, 7, 38-41 (in Russian).

8. Zlobin A.I. Morphophysiological and biochemical changes in barley plants under treatment with growth regulators, Cand. Sci. (Biol.) dissertation. Moscow, 1994, 18 p. (In Russian).

9. Wagner W.J., Gross M.L. Using mass spectrometry‐based methods to understand amyloid formation and inhibition of alpha‐synuclein and amyloid beta. Mass spectrom. rev., 2024, 43(4), 782-825. DOI:https://doi.org/10.1002/mas.21814.

10. Li S., Liu, Y., Lu S., Xu J., Liu X., Yang D. A crazy trio in Parkinson's disease: metabolism alteration, α synuclein aggregation, and oxidative stress. Mol. Cell. Biochem., 2025, 480(1), 139-157. DOI:https://doi.org/10.1007/s11010-024-04985-3.

11. Zueva I.V., Vasilieva E.A., Gaynanova G.A., Moiseenko A.V., Burtseva A.D. Can activation of acetylcholinesterase by β-amyloid peptide decrease the effectiveness of cholinesterase inhibitors? Int. J. Mol. Sci., 2023, 24(22), 16395. DOI:https://doi.org/10.3390/ijms242216395.

12. Gajendra K., Pratap G.K., Poornima D.V., Shantaram M., Ranjita G. Natural acetylcholinesterase inhibitors: a multi-targeted therapeutic potential in Alzheimer's disease Eur. J. Med. Chem. Rep., 2024, 11, 100154. DOI:https://doi.org/10.1016/j.ejmcr.2024.100154.

13. Mortada S., Karrouchi K., Hamza E.H., Oulmidi A., Bhat M.A., Mamad H. Synthesis, structural characterizations, in vitro biological evaluation and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents. Sci. Rep., 2024, 14(1), 1312. DOI:https://doi.org/10.1038/s41598-024-51290-6.

14. Hadda T.B., Deniz F.S., Orhan I.E., Zgou H., Rauf A., Mabkhot Y.N., Maalik A. Spiro heterocyclic compounds as potential anti-alzheimer agents (Part 2): Their metal chelation capacity, POM analyses and DFT studies. Med. Chem., 2021, 17(8), 834-843. DOI:https://doi.org/10.2174/1573406416666200610185654.

15. Shubina A.A., Orlova T.N. Synthesis and structural features of La(III) complex compounds with organic ligands. Cifra. Khimiya. 2024, 1(1), 1-13. Available at: https://chemistry.cifra.science/archive/1-1-2024-april/10.18454/CHEM.2024.1.5 (accessed 20.07.2025). (In Russian).

16. Netreba E.E., Fedorenko A.M., Pavlov A.A. Synthesis and study of the molecular-crystal structure of 4,4,10,10-tetramethyl-1,3,7,9-tetraazaspiro[5.5]undecane-2,8-dione. Nauk. visnyk Uzh. univ. Ser.: Khimiya [Scientific Buelletin of Uzhhorod University. Series: Chemistry], 2011, 1, 107-116.

17. Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Comp., 2014, 50(3), 444-457. DOI:https://doi.org/10.1007/s10593-014-1496-1.

18. Ulmer T.S., Bax A., Cole N.B., Nussbaum R.L. Structure and dynamics of micelle-bound human alpha-synuclein. J. Biol. Chem., 2005, 280(10), 9595-9603. DOI:https://doi.org/10.1074/jbc.M411805200.

19. Granovsky A.A. Firefly version 7.1.G, Available at: http://classic.chem.msu.su/gran/firefly/index.html (accessed 20.07.2025).

20. Zhurko G., Zhurko D. Chemcraft: graphical software for visualization of quantum chemistry computations. Version 1.8 (build 682). Chemcraft website. 2025. Available at: https://www.chemcraftprog.com (accessed: 20.07.2025).

21. Grosdidier A., Zoete V., Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39 (Web Server issue), 270-277. DOI:https://doi.org/10.1093/nar/gkr366.

22. ChemAxon Log D vs. pH Predictor. ChemAxon. Available at: https://chemaxon.com/products/logd-predictor (accessed: 20.07.2025).

23. Wu K., Kwon S., Zhou X., Fuller C., Wang X., Vadgama J., Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int. J. Mol. Sci., 6, 25(23), 13121. DOI:https://doi.org/10.3390/ijms252313121.

Войти или Создать
* Забыли пароль?