студент
Воронеж, Воронежская область, Россия
сотрудник с 01.01.2015 по 01.01.2025
Воронеж, Воронежская область, Россия
Воронеж, Воронежская область, Россия
студент
Воронеж, Воронежская область, Россия
студент
Воронеж, Воронежская область, Россия
ВАК 1.4.7 Высокомолекулярные соединения
ВАК 2.6.13 Процессы и аппараты химических технологий
ВАК 1.4.3 Органическая химия
УДК 544.478-03 Композиционные катализаторы
УДК 547.564.31 Мононитрофенолы
Получен нанокомпозит серебра на матрице природного полисахарида – гуаровой камеди, сшитой боратными мостиками. Металлические наночастицы получены восстановлением ионов серебра под действием полисахарида. Образование нанокомпозитов подтверждено методами УФ-, ИК-спектроскопии и рентгеновской дифракции. Полученный полимерный нанокомпозит проявляет каталитическую активность в реакции восстановления 4-нитрофенола боргидридом натрия в мягких условиях.
гуаровая камедь, наночастицы серебра, катализ, восстановление, 4-нитрофенол
1. Попов Ю.В., Мохов В.М., Небыков Д.Н., Будко И.И. Наноразмерные частицы в катализе: получение и использование в реакциях гидрирования и восстановления (обзор). Известия ВолгГТУ (Сер. «Химия и технология элементоорганических мономеров и полимерных материалов»; вып. 12): межвуз. сб. науч. ст. – Волгоград, 2014, 7(134), 5-44. URL: https://www.vstu.ru/uploadiblok/files/izvestiya/archive/11/2014-07.pdf (дата обращения 17.07.2025).
2. Zhang K., Suh J.M., Choi J.-W., Jang H.W. Shokouhimehr M., Varma R.S. Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega, 2019, 4(1), 483-495. DOI:https://doi.org/10.1021/acsomega.8b03051.
3. Begum R., Rehan R., Farooqi Z.H., Butt Z., Ashraf S. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future. J. Nanopart. Res., 2016, 18(8), 231. DOI:https://doi.org/10.1007/s11051-016-3536-5.
4. Dong X.-Y., Gao Z.-W., Yang K.-F., Zhang W.-Q., Xu L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5, 2554-2574. DOI:https://doi.org/10.1039/C5CY00285K.
5. Pradhan N., Pal A., Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf., A: Physicochem. Eng. Aspects, 2002, 196(2-3), 247-257. DOI:https://doi.org/10.1016/S0927-7757(01)01040-8.
6. Zhang W., Tan F., Wang W., Qiu X., Qiao X., Chen J. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater., 2012, 217–218, 36-42. DOI:https://doi.org/10.1016/j.jhazmat.2012.01.056.
7. Sharma M., Sarma P.J., Goswami M.J., Bania K.K. Metallogel templated synthesis and stabilization of silver particles and its application in catalytic reduction of nitro-arene. J. Colloid Interface Sci., 2017, 490, 529 541. DOI:https://doi.org/10.1016/j.jcis.2016.11.065.
8. Shanmugaraj K., Campos C.H., Singh D.P., Gracia-Pinilla M.A., Díaz de Leon V., Aepuru R., Mangalaraja R.V. Edge-site selective decoration of silver nanoparticles on TiO2 nanosheets for the rapid catalytic reduction of nitroarenes. J. Environm. Chem. Eng., 2024, 12(3), 112588. DOI:https://doi.org/10.1016/j.jece.2024.112588.
9. Черных М.В., Михеева Н.Н., Зайковский В.И., Мамонтова Г.В. Влияние содержания Ag на активность катализаторов Ag/CeO2 в восстановлении 4-нитрофенола при комнатной температуре и атмосферном давлении. Кинет. катал., 2020, 61(5), 708-715. DOI:https://doi.org/10.31857/S0453881120050020.
10. Begum R., Naseem Kh., Ahmed E., Sharif A., Farooqi Z.H. Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf., A: Physicochem. Eng. Asp., 2016, 511, 17-26. DOI:https://doi.org/10.1016/j.colsurfa.2016.09.076.
11. Begum R., Farooqi Z.H., Aboo A.H., Ahmed E., Sharif A., Xiao J. Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. J. Hazard. Mater., 2019, 377, 399-408. DOI:https://doi.org/10.1016/j.jhazmat.2019.05.080.
12. Naseem Kh., Begum R., Farooqi Z.H., Wu W., Irfan A. Core-shell microgel stabilized silver nanoparticles for catalytic reduction of aryl nitro compounds. Appl. Organomet. Chem., 2020, e5742. DOI:https://doi.org/10.1002/aoc.5742.
13. Liao G., Chen J., Zeng W., Yu Ch., Yi Ch., Xu Z. Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J. Phys. Chem. C., 2016, 120(45), 25935–25944. DOI:https://doi.org/10.1021/acs.jpcc.6b09356.
14. Giri S., Das R., van der Westhuyzen Ch., Maity A. An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite. Appl. Catal. B: Environmental, 2017, 209, 669-678. DOI:https://doi.org/10.1016/j.apcatb.2017.03.033.
15. Baran T. Bio-synthesis and structural characterization of highly stable silver nanoparticles decorated on a sustainable bio-composite for catalytic reduction of nitroarenes. J. Mol. Struct., 2019, 1182, 213-218. DOI:https://doi.org/10.1016/j.molstruc.2019.01.057.
16. Sivagami M., Asharani I.V. Catalytic reduction of nitroarenes by Cucumis maderaspatanus L. leaves extract mediated silver nanoparticles. J. Taiwan Inst. Chem. Eng., 2023, 104981. DOI:https://doi.org/10.1016/j.jtice.2023.104981.
17. Russo M., Armetta F., Riela S., Martino D.Ch., Lo Meo P., Noto R. Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. J. Molecular Cat. A.: Chem., 2015, 408, 250-261. DOI:https://doi.org/10.1016/j.molcata.2015.07.031.
18. Ahmad A., Roy Pr.Jh., Zhou Sh., Irfan A., Kanwal F., Begum R., Farooqi Z.H. Fabrication of silver nanoparticles within chitosan based microgels for catalysis. Int. J. Biol. Macromol., 2023, 240, 124401. DOI:https://doi.org/10.1016/j.ijbiomac.2023.124401.
19. Zheng Y., Zhu Y., Tian G., Wang A. In situ generation of silver nanoparticles within crosslinked 3D guar gum networks for catalytic reduction. Int. J. Biol. Macromol., 2015, 73, 39-44. DOI:https://doi.org/10.1016/j.ijbiomac.2014.11.007.
20. Sundharaiya K., Kabilan M., Karuthamani M., Sathish G., Santha S., Muthuramalingam S., Jayakumar M. Guar gum: A comprehensive review of its potential applications in pharmaceuticals, biomedicine, and the food industry. Ann. Phytomed., 2025, 14(1), 187-198. DOI:https://doi.org/10.54085/ap.2025.14.1.18.
21. Sharma G., Sharma Sh., Kumar A., Al-Muhtaseb A.H., Naushad M., Ghfar A.A., Mola G.T., Stadler F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym., 2018, 199, 534-545. DOI:https://doi.org/10.1016/j.carbpol.2018.07.053.
22. Petryayeva E., Krull U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing. A review. Anal. Chim. Acta. 2011, 706(1), 8-24. DOI:https://doi.org/10.1016/j.aca.2011.08.020.
23. Khan N., Kumar D., Kumar P. Silver nanoparticles embedded guar gum/gelatin nanocomposite: Green synthesis, characterization and antibacterial activity. Coll. Interface Sci. Commun., 2020, 35, 100242. DOI:https://doi.org/10.1016/j.colcom.2020.100242.



