1,3,4-OKSADIAZOLY: STRATEGII SINTEZA I PRIMENENIE
Abstract and keywords
Abstract (English):
1,3,4-oksadiazoly predstavlyayut obshirnyi klass geterotsiklicheskikh soedinenii, nashedshikh primenenie v razlichnykh oblastyakh nauki i tekhniki: farmatsiya, polimery, fluorofory, optoehlektronika i drugie. V nastoyashchee vremya nakoplen ogromnyi material po sintezu 1,3.4-oksadiazolov, no ves' on razroznen i nespetsifichen. V obzore predstavleny razlichnye podkhody k sintezu 1,3,4-oksadiazolov, opisannye v literature za poslednie 5-15 let, a takzhe privedeny primery prakticheskogo primeneniya dannogo klassa soedinenii.

Keywords:
1,3,4-oksadiazoly, sintez, kataliz, tverdfaznyi sintez, degidratiruyushchie agenty, biologicheski aktivnye veshchestva, khemosensory
Text
Text (PDF): Read Download
References

1. Nesynov E. P., Grekov A.P. Himiya proizvodnyh 1,3,4-oksadiazola. Uspehi himii, 1964, 10, 1184-1197.

2. Beal D.M., Bryans J.S., Johnson P.S., Newman J., Pasquinet C., Peakman T.M., Ryckmans T., Wheeler S. Preparation of triazolobenzodiazepine derivatives as Vasopressin V1a antagonists. Tetrahedron Lett., 2011, 52(45), 5913-5917. DOI:https://doi.org/10.1016/j.tetlet.2011.08.011.

3. Tran T.P., Patel N., Samas B., Schwarz J.B. Robust preparation of novel imidazo[5,1-b][1,3,4]oxadiazoles. Org. Biomol. Chem., 2009, 7(24), 5063-5066. DOI:https://doi.org/10.1039/B916188K.

4. El-Ziaty A., Abdalh A., Hamed A., Shiba S., Abdullha A. Synthesis of Novel 2-Propenoyl Amides, Esters, Heterocyclic Compounds and Their Screening as Antifungal and Antibacterial Agents. Eur. J. Chem., 2012, 3(1), 65-70. DOI:https://doi.org/10.5155/eurjchem.3.1.65-70.518.

5. Mutchu B.R., Kotra V., Onteddu S.R., Boddapati S.N.M., Bollikolla H.B. Synthesis, Cytotoxicity and Antimicrobial Evaluation of Some New 2‑Aryl,5‑Substituted 1,3,4‑Oxadiazoles and 1,3,4‑Thiadiazoles. Chemistry Africa, 2019, 2, 15-20. DOI:https://doi.org/10.1007/s42250-018-00034-x.

6. Volonterio A., Moisan L., Rebek J. Catalytic Asymmetric Synthesis of Chiral Amines via Dynamic Kinetic Resolution. J. Org. Lett., 2007, 9(19), 3733-3736. DOI:https://doi.org/10.1021/ol701487g.

7. Baxendale I.R., Ley S.V., Martinelli M. The Synthesis of Heterocyclic Compounds Using Flow Chemistry. Tetrahedron, 2005, 61(22), 5323-5349. DOI:https://doi.org/10.1016/j.tet.2005.03.062.

8. Brown B.J., Clemens I.R., Neesom J.K. Diisopropylcarbodiimide: A novel reagent for the synthesis of 1,3,4-oxadiazoles on solid-phase. Synlett, 2000, 131-133. DOI:https://doi.org/10.1002/9780470187975.ch3.

9. Brain C.T., Brunton S.A. A new convenient synthesis of 5-aryl-2-(arylamino)-1,3,4-oxadiazole derivatives. Synlett, 2001, 2001(3), 0382-0384. DOI:https://doi.org/10.1055/s-2001-11404.

10. Wang Y., Sauer D.R., Djuric S.W. Novel Approaches to the Synthesis of Benzodiazepine Derivatives. TetrahedronLett., 2006, 47(1), 105-108. DOI:https://doi.org/10.1016/j.tetlet.2005.10.131.

11. Reddy C.H.K., Reddy P.S.N., Ratnam C.V. A Facile Synthesis of 2-Aryl-3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones. Synthesis, 1983, 10, 842-844. DOI:https://doi.org/10.1055/s-1983-30538.

12. Sharba A.H.K., Al-Bayati R.H., Aouad M. Synthesis of oxadiazoles, triazoles and triazole derived from Benzo[b]thiophene. Molecules, 2005, 10(9), 1161-1168. DOI:https://doi.org/10.3390/10091161.

13. Deepak S., Rakshit A., Ritu V. Microwave-Assisted Synthesis of Some 1,3,4-Oxadiazole Derivatives and Evaluation of Their Antibacterial and Antifungal Activity. Org. Chem. Int. 2014, 1, 694060. DOI:https://doi.org/10.1155/2014/694060.

14. Kaur H., Kumar S., Vishwakarma P., Sharma M. Synthesis and antipsychotic and anticonvulsant activity of some new substituted oxa/thiadiazolylazetidinonyl/thiazolidinonylcarbazoles. Eur. J. Med. Chem., 2010, 45(7), 2777-2783. DOI:https://doi.org/10.1016/j.ejmech.2010.02.060.

15. Majumdar P., Pati A., Patra M., Kanta R., Behera A.K., Behera R.K. Acid Hydrazides, Potent Reagents for Synthesis of Oxygen‑, Nitrogen‑, and/or Sulfur-Containing Heterocyclic Rings. Chem. Rev., 2014, 114(5), 2942–2977. DOI:https://doi.org/10.1021/cr300122t.

16. Kucukguzel G.S., Kucukguzel I., Tatar E., Rollas S., Sahin F., Gulluce M., De Clercq E., Kabasakal L. Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents. Eur. J. Med. Chem., 2007, 42(7), 893-901. DOI:https://doi.org/10.1016/j.ejmech.2006.12.038.

17. Metwally M.A., Bondock S., El-Azap H., Ez-Eldin Kandeel M. Thiosemicarbazides: synthesis and reactions. J. Sulfur Chem., 2011. 32(5), 489-519. DOI:https://doi.org/10.1080/17415993.2011.601869.

18. Asghar S. F., Yasin K. A., Habib-ur-Rehman, Aziz S. Synthesis and cyclisation of 1,4-disubstituted semicarbazides. Nat. Prod. Res., 2010, 24(4), 315–325. DOI:https://doi.org/10.1080/14786410802435935.

19. Azab M.E., Kassab E.A., El-Hashash M.A., Ali R.S. New Heterocyclic Compounds Containing Phosphorus and Sulfur. Phosphorus, Sulfur, Silicon, 2009, 184(3), 610-625. DOI:https://doi.org/10.1080/10426500802243182.

20. Sun X.W., Liang H.-T., Zhang Z.-Y. Synthesis and antibacterial activity of 4-aryl-1-(1-pchlorophenyl-5-methyl-1,2,3-triazol-4-carbonyl)thiosemicarbazides and their related heterocyclic derivatives. Indian J. Chem., 1999, 38B, 679-683.

21. Li Z., Wang X. Synthesis and Biological Evaluation of 1,3,4-Oxadiazole Derivatives. Indian J. Chem., 2003, 42B, 941-944.

22. Rostom S.A.F., Shalaby M.A., El-Demellawy M.A. Design and Synthesis of Novel Anticancer Agents. Eur. J. Med. Chem., 2003, 38(11-12), 959-974. DOI:https://doi.org/10.1016/j.ejmech.2003.08.003.

23. Vasoya S.L., Patel M.R., Dobaria S.V., Joshi H.S. Microwave-Assisted Synthesis of Thiazole Derivatives. Indian J. Chem., 2005, 44B, 405-409.

24. Kocyigit-Kaymakcoglu B., Oruc-Emre E.E., Unsalan S., Tabanca N., Khan S.I., Wedge D.E., Iscan G., Demirci F., Rollas S. Synthesis and biological activity of hydrazide-hydrazones and their corresponding 3 acetyl-2,5-disubstituted-2,3-dihydro1,3,4-oxadiazoles Med. Chem. Res., 2012, 21, 3499-3508. DOI:https://doi.org/10.1007/s00044-011-9882-z

25. Joshi S.D., Vagdevi H.M., Vaidya V.P., Gadaginamath G.S. Synthesis and Antitubercular Activity of 1,3,4 Oxadiazole Derivatives. Eur. J. Med. Chem., 2008, 43(9), 1989-1996. DOI:https://doi.org/10.1016/j.ejmech.2007.11.016.

26. Leung D., Du W., Hardouin C., Cheng H., Hwang I., Cravatt B.F., Boger D.L. Discovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: concurrent optimization of enzyme inhibitor potency and selectivity. Bioorg. Med. Chem. Lett., 2005, 15(5), 1423-1428. DOI:https://doi.org/10.1016/j.bmcl.2004.12.085.

27. Garfunkle J., Ezzili C., Rayl T.J., Hochstatter D.G., Hwang I., Boger D.L. Optimization of the central heterocycle of alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase. J. Med. Chem., 2008, 51(15), 4392-4403. DOI:https://doi.org/10.1021/jm800136b.

28. Campbell E.L., Zuhl A.M., Liu C.M., Boger D.L. Total synthesis of (+)-fendleridine (aspidoalbidine) and (+)-1-acetylaspidoalbidine. J. Am. Chem. Soc., 2010, 132(9), 3009-3012. DOI:https://doi.org/10.1021/ja908819q.

29. Nayak A.S., Baby G., Bhavani P.D., Madhukar G., Niharikha B., Sudha K. Design, microwave assisted synthesis and characterization of oxadiazoles. World J. Pharm. Res., 2023, 12(13), 991-995. DOI:https://doi.org/10.20959/wjpr202313-29065.

30. Wagner E., Al-Kadasi K., Zimecki M., Sawka-Dobrowolska W. Antiproliferative Activity of 1,3,4-Oxadiazole Derivatives. Eur. J. Med. Chem., 2008, 43(11), 2498-2504. DOI:https://doi.org/10.1016/j.ejmech.2008.01.035.

31. Desforges G., Bombrun A., Quattropani A. Solid-Phase Synthesis of Heterocyclic Libraries. J. Comb. Chem., 2008, 10(5), 671-680. DOI:https://doi.org/10.1021/cc800083h.

32. Hedrick J.L., Twieg R. Design of High-Performance Polymers for Electronic Applications. Macromolecules, 1992, 25(7), 2021-2025. DOI:https://doi.org/10.1021/ma00033a028.

33. Badri R., Gorjizadeh M. Synthesis of Phosphorus-Containing Heterocycles. Phosphorus, Sulfur, Silicon, 2010, 185(3), 544-549. DOI:https://doi.org/10.1080/10426500902840887.

34. Brockmeyer F., van Gerven D., Saak W., Martens J. Two sequential multicomponent reactions: synthesis of thiazolidin-4-yl-1,3,4-oxadiazoles under mild conditions. Synthesis, 2014, 46(12), 1603-1612. DOI:https://doi.org/10.1055/s-0033-1341043.

35. Bio M.M., Javadi G., Song Z.J. An improved synthesis of N-isocyanoiminotriphenylphosphorane and its use in the preparation of diazoketones. Synthesis, 2005, (1), 19-21. DOIhttps://doi.org/10.1055/s-2004-834928.

36. Frohclichova Z., Tomascikova J., Imrich I., Kristian P., Danihel I., Bohm S., Sabolova D. Synthesis and properties of novel biologically interesting polycyclic 1,3,4-oxadiazoles containing acrididine/acridone moieties. Heterocycles, 2009, 77(2), 1019-1035. DOI:https://doi.org/10.3987/COM-08-S(F)80.

37. Pitasse-Santos P., Sueth-Santiagob V., Marco E.F. Lima. 1,2,4- and 1,3,4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. Sociedade Brasileirade Química, 2018, 29(3), 435-456. DOI:https://doi.org/10.21577/0103-5053.20170208.

38. Ida Angel Priya Samuel Rajan, Saravanakumar Rajendran. DABCO-catalyzed esterification of N-pivaloyl-activated amides. Org. Biomol. Chem., 2024, 22, 5170-5180. DOI:https://doi.org/10.1039/D4OB00752B.

39. Lam K.S., Salmon S.E., Hersh E.M., Hruby V.J., Kazmierski W.M., Knapp R.J. A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity. Nature, 1991, 354, 82–84.

40. DeWitt S.H., Kiely J.S., Stankovic C.J., Schroeder M.C., Cody D.M.R., Pavia M.R. Diversomers - An Approach to Nonpeptide, Nonoligomeric Chemical Diversity. Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 6909–6913. DOIhttps://doi.org/10.1073/pnas.90.15.6909.

41. Van Hattum H., Waldmann H. Biology-Oriented Synthesis: Harnessing the Power of Evolution. J. Am. Chem. Soc., 2014, 136, 11853–11859. DOI:https://doi.org/10.1021/ja505861d.

42. Wilk W., Zimmermann T.J., Kaiser M., Waldmann H. Principles, Implementation, and Application of Biology-Oriented Synthesis (BIOS). Biol. Chem., 2010, 391, 491–497. DOI:https://doi.org/10.1515/BC.2010.013.

43. Cankarova N., Krchnak V. Solid-Phase Synthesis Enabling Chemical Diversity. In Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology; Trabocchi, A., Ed.; Wiley: New York, 2013; pp 201–252. DOI:https://doi.org/10.1002/9781118618110.ch7.

44. Hwang J.Y., Choi H.S., Lee D.H., Gong Y.D. Solid-Phase Synthesis of 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Derivatives via Selective, Reagent-Based Cyclization of Acyldithiocarbazate Resins. J. Comb. Chem., 2005, 7, 816–819. DOI:https://doi.org/10.1021/cc0500957.

45. Abdildinova A., Gong Y.D. Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry. ACS Comb. Sci., 2018, 20, 309–329. DOI:https://doi.org/10.1021/acscombsci.8b00044.

46. Yang S.J., Choe J.H., Abdildinova A., Gong Y.D. A Highly Efficient Diversification of 2-Amino/Amido-1,3,4-oxadiazole and 1,3,4-Thiadiazole Derivatives via Reagent-Based Cyclization of Thiosemicarbazide Intermediate on Solid-Phase. ACS Comb. Sci., 2015, 17, 732–741. DOI:https://doi.org/10.1021/acscombsci.5b00140.

47. Yang S.J., Choe J.H., Gong Y.D. Solid-Phase Synthesis of 1,3,4-Thiadiazole Derivatives via Desulfurative Cyclization of Thiosemicarbazide Intermediate Resin. ACS Comb. Sci., 2016, 18, 499–506. DOI:https://doi.org/10.1021/acscombsci.6b00071.

48. Ha J.E., Yang S.J., Gong Y.D. Construction of 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Library with a High Level of Skeletal Diversity Based on Branching Diversity-Oriented Synthesis on Solid-Phase Supports. ACS Comb. Sci., 2018, 20, 82–97. DOI:https://doi.org/10.1021/acscombsci.7b00174.

49. Kwon H.J., Kim Y.J., Han S.Y., Gong Y.D. Design and Solid-Phase Parallel Synthesis of 2,4,5-Trisubstituted Thiazole Derivatives via Cyclization Reaction with a Carbamimidothioate Linker. ACS Comb. Sci., 2019, 21, 482–488. DOI:https://doi.org/10.1021/acscombsci.9b00039.

50. Fu G.Y., Sheng S.R., Liu X.L., Cai M.Z., Huang X. Solid-Phase Organic Synthesis of Vinyl-Substituted 1,3,4 Oxadiazoles Using Polymer-Bound α-Selenopropionic Acid. Synth. Commun., 2008, 38, 4240–4249. DOI:https://doi.org/10.1080/00397910802324518

51. Wang Y.G., Xu W.M., Huang X. Selenium-Based Safety-Catch Linker: Solid-Phase Synthesis of Vinyl-Substituted Oxadiazoles and Triazoles. J. Comb. Chem., 2007, 9, 513–519. DOI:https://doi.org/10.1021/cc0700187.

52. Brown B.J., Clemens I.R., Neesom J.K. Diisopropylcarbodiimide: A Novel Reagent for the Synthesis of 1,3,4 Oxadiazoles on Solid-Phase. Synlett, 2000, 1, 131–133. DOI:https://doi.org/10.1002/9780470187975.ch3.

53. Lutun S., Hasiak B., Couturier D. Efficient Synthesis of 1,3,4-Oxadiazoles under Mild Conditions. Synth. Commun., 1999, 29(1), 111-116. DOI:https://doi.org/10.1080/00397919908085741.

54. Fang T., Tan Q.T., Ding Z.W., Liu B.X., Xu B. Pd-Catalyzed Oxidative Annulation of Hydrazides with Isocyanides: Synthesis of 2-Amino-1,3,4-oxadiazoles. Org. Lett., 2014, 16, 2342–2345. DOI:https://doi.org/10.1021/ol5006449.

55. Liu T., Fu H. Copper-Catalyzed Synthesis of N-Heterocyclic Compounds. Synthesis, 2012, 44, 2805–2824. DOI:https://doi.org/10.1055/s-0032-1316763; Art ID: SS-2012-E0420-R.

56. Giri R., Thapa S. Copper-Catalyzed Cross-Couplings of Organometallic Reagents with and without Assistance from PN Ligands. Synlett, 2015, 11, 709–715. DOI:https://doi.org/10.1055/s-0034-1380121.

57. Daugulis O., Do H.-Q., Shabashov D. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds. Acc. Chem. Res., 2009, 42, 1074–1086. DOI:https://doi.org/10.1021/ar9000058.

58. Murty M.S.R., Penthala R., Buddana S.K., Prakasham R.S., Das P., Polepalli S., Jain N., Bojja S. Med. Chem. Res., 2014, 23, 4579–4594. DOI:https://doi.org/10.1007/S00044-014-1025-X.

59. Guin S., Ghosh T., Rout S.K., Banerjee A., Patel B.K. Cu(II) Catalyzed Imine C-H Functionalization Leading to Synthesis of 2,5-Substituted 1,3,4-Oxadiazoles. Org. Lett., 2011, 13(22), 5976-5979. DOI:https://doi.org/10.1021/ol202409r.

60. Hachiya H., Hirano K., Satoh T., Miura M. Nickel-Catalyzed Direct CH Arylation and Alkenylation of Heteroarenes with Organosilicon Reagents. Angew. Chem., 49(12), 2202-2205 DOI:https://doi.org/10.1002/anie.200906996.

61. Zhang C., Jiao N. Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by Bronsted Acids. J. Am. Chem. Soc., 2010, 132(26), 8909–8911. DOI:https://doi.org/10.1021/ja103668q.

62. Hachiya H., Hirano K., Satoh T., Miura M. Copper-Mediated Annulative Direct Coupling of o Alkynylphenols with Oxadiazoles: A Dehydrogenative Cascade Construction of Biheteroaryls. Org. Lett., 2011, 13(12), 3076-3079. DOI:https://doi.org/10.1021/ol200975j

63. Bouarfa S., Graßl S., Ivanova M., Langlais T., Bentabed-Ababsa G., Lassagne F., Erb W., Roisnel T., Dorcet V., Knochel P., Mongin F. Copper- and Cobalt-Catalyzed Syntheses of Thiophene-Based Tertiary Amines. Eur. J. Org. Chem., 2019, 2019(20), 3244-3258. DOI:https://doi.org/10.1002/ejoc.201900276

64. Schwärzer K., Tüllmann C.P., Graßl S., Górski B., Brocklehurst C.E., Knochel P. Functionalization of 1,3,4 Oxadiazoles and 1,2,4-Triazoles via Selective Zincation or Magnesiation Using 2,2,6,6-Tetramethylpiperidyl Bases. Org. Lett., 2020, 22, 1899–1902. DOI:https://doi.org/10.1021/acs.orglett.0c00238.

65. Kushwaha D., Tiwari V.K. Click Inspired Synthesis of 1,2,3-Triazole-linked 1,3,4-Oxadiazole Glycoconjugates. J. Heterocycl. Chem., 2017, 54(4), 2454–2462. DOI:https://doi.org/10.1002/slct.201700347.

66. Ainsworth C. The Chemistry of Isocyanates. J. Am. Chem. Soc., 1954, 77(5), 1148-1150. DOI:https://doi.org/10.1021/ja01610a019.

67. Polshettiwar V., Varma R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Tetrahedron Lett., 2008, 49, 879-883. DOI:https://doi.org/10.1016/j.tetlet.2007.11.165.

68. Dong Z., Wu Z., Zhang Q., Xu Y., Lu G.P. 2-(1,2,4-Triazole-5-Yl)-1,3,4-Oxadiazole as a Novel Building Block for Energetic Materials. Front. Chem., 2022, 10, 1–11. DOI:https://doi.org/10.3389/fchem.2022.996812.

69. Frederico Rozada A.M., Maçon C., Santos J.L.A., Ferreira R.M., da Motta Dacome M.L.F., Mendes R.P., Vicente Seixas F.A., Caleffi K., Basso E.A., de Freitas Gauze Bandoch G. Synthesis and antimicrobial evaluation of hybrids methoxynaphthalene-N-acylhydrazones/1,3,4-oxadiazoles. Future Med. Chem., 2025, 17(8), 885–898. DOI:https://doi.org/10.1080/17568919.2025.2491292.

70. Andriato P.M., Baldin V.P., de Almeida A.L., Sampiron E.G., de Vasconcelos S.S.N., Caleffi-Fercioli K.R., Scodro R.B.L., Meneguello J.E., Maigret B., Kioshima É.S., Cardoso R.F. 1,3,4-oxadiazoles with effective anti-mycobacterial activity. Lett. Appl. Microbiol., 2025, 78(3), ovaf029. DOI:https://doi.org/10.1093/lambio/ovaf029.

71. Giray B., Kaya N., Fiabane M., Buyuk A.S., Küçük H.B., Sardas S., Mori M. Biological Evaluation and Computational Modelling Studies on N-acyl Hydrazone and 2,5-Substituted 1,3,4-Oxadiazole Derivatives as Non-toxic Antimicrobial Agents. Curr. Pharm. Des., 2025, Feb 6. DOI:https://doi.org/10.2174/0113816128361524250131110036.

72. Wang G., Tan Y., Zou H., Sui X., Wang Z., Satz A.L., Kuai L., Su W., Zhang Q. DNA-Compatible Cyclization Reaction to Access 1,3,4-Oxadiazoles and 1,2,4-Triazoles. Org. Lett., 2024, 26(7), 1353–1357. DOI:https://doi.org/10.1021/acs.orglett.3c04240.

73. Le H.T., Do K.M., Nguyen Q.P., Doan C.N.M., Nguyen N.A., Phan T.T., Tran X.T.C., Ha Q.T.K., Tran Q., Morita H., Bui H.T.B. Syntheses and Cytotoxicities of Quinazolinone-Based Conjugates. Chem. Pharm. Bull. (Tokyo), 2024, 72(1), 61–67. DOI:https://doi.org/10.1248/cpb.c23-00674.

74. Kumar G., Kumar R., Mazumder A., Salahuddin, Kumar U. 1,3,4-Oxadiazoles as Anticancer Agents: A Review. Recent Pat. Anticancer Drug Discov., 2024, 19(3), 257–267. DOI:https://doi.org/10.2174/1574892818666230727102928.

75. Ilovaisky A.I., Scherbakov A.M., Miciurov D., Chernoburova E.I., Merkulova V.M., Bogdanov F.B., Salnikova D.I., Sorokin D.V., Krasil'nikov M.A., Bozhenko E.I., Zavarzin I.V., Terent'ev A.O. Secosteroid - 1,3,4-oxadiazole hybrids: Synthesis and evaluation of their activity against hormone-dependent breast cancer cells. J. Steroid Biochem. Mol. Biol., 2025, 251, 106745. DOI:https://doi.org/10.1016/j.jsbmb.2025.106745.

76. Kayukova L., Bismilda V., Turgenbayev K., Uzakova A., Baitursynova G., Jussipbekov U., Mukanova M., Chingissova L., Dyussembayeva G., Borsynbayeva A., Yerlanuly A., Auyezov A. β-Aminopropioamidoximes derivatives as potential antitubercular agents against anthropozoonotic infections caused by Mycobacterium tuberculosis and Mycobacterium bovis. Vet. World, 2025, 18(3), 731–745. DOI:https://doi.org/10.14202/vetworld.2025.731-745.

77. Volynets G.P., Gudzera O.I., Usenko M.O., Gorbatiuk O.B., Bdzhola V.G., Kotey I.M., Balanda A.O., Prykhod'ko A.O., Lukashov S.S., Chuk O.A., Skydanovych O.I., Yaremchuk G.D., Yarmoluk S.M., Tukalo M.A. Probing the Molecular Basis of Aminoacyl-Adenylate Affinity with Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis. J. Mol. Recognit., 2025, 38(2), e3110. DOI:https://doi.org/10.1002/jmr.3110.

78. Babaei D., Saeedian Moghadam E., Navidpour L., Amini M. The Most Up-to-Date Advancements in the Design and Development of Urease Inhibitors (January 2020-March 2024). J. Agric. Food Chem., 2025, 73(7), 3795–3815. DOI:https://doi.org/10.1021/acs.jafc.4c07972.

79. Erdogan A., Ozhan Y., Sipahi H., Gurdal E.E., Sippl W., Koksal M. iNOS/PGE2 inhibitors as a novel template for analgesic/anti-inflammatory activity: Design, synthesis, in vitro biological activity and docking studies. Arch. Pharm. (Weinheim), 2024, 357(12), e2400238. DOI:https://doi.org/10.1002/ardp.202400238.

80. Vardan S., Smulyan H., Mookherjee S., Eich R. Pharmacological Properties of New Vasodilators. Clin. Pharmacol. Ther., 1983, 34(3), 290-6. DOI:https://doi.org/10.1038/clpt.1983.170.

81. Schlecker R., Thieme P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolahines. Tetrahedron, 1988, 44, 3289-3294. DOI:https://doi.org/10.1016/S0040-4020(01)85962-7.

82. Ogata M., Atobe H., Hushida H., Yamamoto K. New Antibiotics from Streptomyces Species. J. Antibiot., 1971, 24, 443-451. DOI:https://doi.org/10.7164/antibiotics.24.443.

83. Liu F., Luo X.Q., Song B.A., Bhadury P.S., Yang S., Jin L.H., Xue W., Hu D.Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg. Med. Chem., 2008, 16(7), 3632-3640. DOI:https://doi.org/10.1016/j.bmc.2008.02.006

84. Ajani O.O., Iyaye K.T. Recent advances on oxadiazole motifs: Synthesis, reactions and biological activities. Mediterr. J. Chem., 2020, 10(5), 418–452. DOI:https://doi.org/10.13171/mjc10502005121200ooa.

85. Chaves J.D.S., Tunes L.G., Franco C.H., Francisco T.M., Corrêa C.C., Murta S.M.F. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur. J. Med. Chem., 2017, 127, 727–739. DOI:https://doi.org/10.1016/j.ejmech.2016.10.052.

86. Biju C.R., Ilango K., Prathap M., Rekha K. Design and Microwave-assisted Synthesis of 1,3,4-Oxadiazole Derivatives for Analgesic and Antiinflammatory Activity. J. Young Pharm., 2012, 4, 33–37. DOI:https://doi.org/10.4103/0975-1483.93576.

87. Lin Y., Li Y., Zhan X. Small Molecule Semiconductors for High-Efficiency Organic Photovoltaics. Chem. Soc. Rev., 2012, 41, 4245–4272. DOI:https://doi.org/10.1039/c2cs15313k.

88. O’Neill M., Kelly S.M. Ordered Materials for Organic Electronics and Photonics. Adv. Mater., 2011, 23, 566 584. DOI:https://doi.org/10.1002/adma.201002884.

89. Priyanka B., Anusha V., Bhanuprakash K. Toward Designing Efficient Multifunctional Bipolar Molecules: DFT Study of Hole and Electron Mobilities of 1,3,4-Oxadiazole Derivatives. J. Phys. Chem. C, 2015, 119(22), 12251–12261. DOI:https://doi.org/10.1021/acs.jpcc.5b04504.

90. Prabhu D.D., Kumar N.S.S., Sivadas A.P., Varghese S., Das S. Trigonal 1,3,4-Oxadiazole-Based Blue Emitting Liquid Crystals and Gels. J. Phys. Chem. C, 2012, 116(43), 13070–13080. DOI:https://doi.org/10.1021/jp305349h.

91. Mikhailov I.E., Popov L.D., Tkachev V.V. Synthesis and crystal structure of novel fluorescent 1,3,4-oxadiazole-containing carboxylate ligands. J. Mol. Struct., 2018, 1157, 374–380. DOI:https://doi.org/10.1016/j.molstruc.2017.12.043.

92. Mihaylov I.E., Artyushkina Yu.M., Dushenko G.A., Mihaylova O.I., Revinskiy Yu.V., Minkin V.I. Cpektral'no-lyuminescentnye svoystva 2-aril-5-(2,6-dimetoksifenil)-1H-1,3,4-oksadiazolov. ZhOH, 2018, 88(2), 342–345. DOI:https://doi.org/10.1134/S107036321802024X.

93. Chen F., Zhang W., Tian T., Bai B., Wang H. Substituent Effects on Intramolecular Charge Transfer of Symmetric Methoxy-Substituted Bi-1,3,4-oxadiazole Derivatives. J. Phys. Chem. C, 2017, 121, 8399–8407. DOI:https://doi.org/10.1021/acs.jpca.7b08845.

94. Chen F., Zhang W., Tian T., Bai B. The effect of molecular structure on intramolecular charge-transfer in 1,3,4-oxadiazole derivatives. J. Photochem. Photobiol. A: Chem., 2019, 377, 309–317. DOI:https://doi.org/10.1016/j.jphotochem.2019.04.011.

95. Mayder D.M., Tonge C.M., Hudson Z.M. Thermally Activated Delayed Fluorescence in 1,3,4-Oxadiazoles with π-Extended Donors. J. Org. Chem., 2020, 85(17), 11094–11103. DOI:https://doi.org/10.1021/acs.joc.0c00908.

96. Lin L., Wang D., Chen S.-H., Wang D.-J. A highly sensitive fluorescent chemosensor for selective detection of zinc (II) ion based on the oxadiazole derivative. Spectrochim. ActaPart A, 2016, 4, 856–889. DOI:https://doi.org/10.1016/j.saa.2016.11.053.

97. Liang Y., Zhang R., Jiang F. Theoretical study on the structures and electronic spectra of novel quinoid 1,3,4-oxadiazole derivatives. J. Mol. Struct.: THEOCHEM, 2008, 848(1-3), 1–8. DOI:https://doi.org/10.1016/J.THEOCHEM.2007.09.011.

98. Kwon D.Y., Lee G.H., Kim Y.S. Study of an Oxadiazole Derivative for a Blue Thermally Activated Delayed Fluorescence Emitter. J. Nanosci. Nanotechnol., 2015, 15, 7828–7831.DOI:https://doi.org/10.1166/jnn.2015.11192.

99. Zhou J.-A., Tang X.-L., Cheng J., Ju Z.-H. An 1,3,4-oxadiazole-based OFF–ON fluorescent chemosensor for Zn²⁺ in aqueous solution and imaging application in living cells. Dalton Trans., 2012, 41, 10626-10632. DOI:https://doi.org/10.1039/c2dt30852e.

100. Kurowska A., Zassowski P., Kostyuchenko A., ZheleznovaYu. Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives. Phys. Chem. Chem. Phys., 2017, 19, 30261–30276. DOI:https://doi.org/10.1039/C7CP05155G.

101. Hernandez-Ainsa S., Barbera J., Marcos M., Serrano J.L. Liquid Crystalline Ionic Dendrimers Containing Luminescent Oxadiazole Moieties. Macromolecules, 2012, 45, 1006-1015.DOI:https://doi.org/10.1021/ma202051c.

Login or Create
* Forgot password?