Kurgan, Russian Federation
UDK 543.422.3-76 Ультрафиолетовая спектрометрия
The article proposes methods for determination of clopidogrel and metamizole sodium in flush water off industrial equipment using multi-wavelength UV spectrometry and calculation of areas under curves. The research concerns with recording the spectra in aqueous solution without preliminary pH adjustment. We performed numerical integration of spectra in the wavelength range from 210 to 290 nm for clopidogrel, and from 220 to 320 nm for sodium metamizole. The methods allow ones to determine clopidogrel and sodium metamizole in solution in the concentration range of 1-100 mg/l. Indeed, the methods do not require extensive sample preparation and complicated analytical equipment. These methods are suitable for routine determination of these compounds in flush water off industrial equipment.
clopidogrel, sodium metamizole, aqueous solution, integral spectrophotometric determination, area under the curve method, flushing water off industrial equipment
1. Zaazaa H. E. et al. Spectrophotometric and spectrodensitometric determination of Clopidogrel Bisulfate with kinetic study of its alkaline degradation // Talanta. 2009. Vol. 78. No. 3. P. 874-884. DOI:https://doi.org/10.1016/j.talanta.2008.12.064.
2. Antypenko L., Gladysheva S., Vasyuk S. Development and validation of clopidogrel bisulphate determination in bulk by UV spectrophotometric method // Scripta Scientifica Pharmaceutica. 2016. Vol. 3. No. 2. P. 25-30. DOI:https://doi.org/10.14748/ssp.v3i2.1704.
3. Dermiş S., Aydoğan E. Rapid and accurate determination of clopidogrel in tablets by using spectrophotometric and chromatographic techniques // Communications Faculty of Sciences University of Ankara. Series B. Chemistry and Chemical Engineering. 2009. Vol. 55. No. 1. P. 1-16.
4. Rao K. M. et al. Determination of clopidogrel by visible spectrophotometry in pure form and pharmaceutical formulations // Journal of the Indian Chemical Society. 2016. Vol. 93. P. 1-8.
5. Shireesha M., Madhavi L., Tuljarani G. Spectrophotometric Determination of Clopidogrel in Pharmaceutical Formulations // Asian Journal of Research in Chemistry. 2011. Vol. 4. No. 10. P. 1566-1568.
6. Koçak Ö. F., Kadıoğlu Y., Şenol O. Determination of Clopidogrel in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods // International Journal of Innovative Research and Reviews. 2020. Vol. 4. No. 1. P. 14-19.
7. Cholke P. B. et al. Development and Validation of Spectrophotometric Method for Clopidogrel bisulfate in pure and in film coated tablet dosage form // Archives of Applied Science Research. 2012. Vol. 4. No. 1. P. 59-64.
8. Cholke P. et al. Development and validation of spectrophotometric method for clopidogrel bisulfate in bulk and formulations // International Journal of Chemical Sciences. 2012. Vol. 10. No. 1. P. 449-456.
9. Mohamed S.H., Issa Y.M., Salim A.I. Quantitative Determination of Clopidogrel Bisulfate using Validated Spectrophotometric Methods // Asian Journal of Advances in Research. 2020. Vol. 3. No. 1. P. 180-190.
10. Gurav S., Venkatamahesh R. Development and Validation of Derivative UV-Spectrophotometric Methods for Quantitative Estimation of Clopidogrel in Bulk and Pharmaceutical Dosage Form // International Journal of ChemTech Research. 2012. Vol. 4. No. 2. P. 497-501.
11. Padmalatha M., Prakash K.V. Extractive Spectrophotometric Determination of Clopidogrel Bisulphite In Pharmaceutical Formulation // Research Journal of Pharmacy and Technology. 2009. Vol. 2. No. 4. P. 727-729.
12. Rajendra V. B. et al. Spectrophotometric method for the estimation of Clopidogrel bisulphate residue in swab samples // World Journal of Pharmaceutical Research. 2012. Vol. 1. No. 3 P. 850-858.
13. Jane J., Jasminkumar M.V., Prasanth D. Estimation of Clopidogrel in Bulk and Pharmaceutical Formulations // Asian Journal of Research in Chemistry. 2010. Vol. 3. No. 4. P. 1086-1089.
14. Gurav S. et al. Spectrophotometric determination of clopidogrel bisulfate in pharmaceutical formulations // American Journal of PharmTech Research. 2011. Vol. 1. No. 4. P. 258-263.
15. Thejomoorthy K. et al. Method Development and Validation for the Quantification of Clopidogrel Bisulphate in Bulk and its Dosage form // International Journal of Pharma Research and Health Sciences. 2019. Vol. 7. No. 1. P. 2882-2885. DOI:https://doi.org/10.21276/ijprhs.2019.01.04.
16. Gavat C.C. Quantitative Analysis Method of Sodium Metamizole in Tablets by Visible (VIS) Spectrophotometry: Spectrophotometric Analysis Method in Visible Range (VIS) // ScienceOpen Preprints. 2024. DOI:https://doi.org/10.14293/PR2199.000614.v1.
17. Chiruță C. et al. The spectrophotometric analysis method of metamizole from pharmaceutical tablets: investigation of linearity, limit of detection and limit of quantification // Universitatea de Stiinte Agricole Si Medicina Veterinara Ion Ionescu de la Brad Iasi, Seria Horticultura. 2018. Vol. 61. No. 1. P. 47-52.
18. Bautista J.A.G. et al. Indirect catalytic spectrophotometric determination of metamizol following oxidation by lead dioxide immobilized in a polyester resin bed // Analytical Letters. 1996. Vol. 29. No. 15. P. 2667-2678. DOI:https://doi.org/10.1080/00032719608002271.
19. Al-Shwaiyat M. et al. Sequential injection spectrophotometric determination of analgine in pharmaceutical formulations using 18-molybdo-2-phosphate heteropoly anion as chromogenic reagent // Bulletin of Dnipro University. Series ‘Chemistry’. 2013. – Vol. 2. No. 19. Pp. 7-18. DOI:https://doi.org/10.15421/081301.
20. Sakiara K.A. et al. Spectrophotometric determination of dipyrone in pharmaceutical preparations by using chromotropic acid // Il Farmaco. 1999. Vol. 54. No. 9. P. 629-635. DOI:https://doi.org/10.1016/S0014-827X(99)00073-7.
21. Abdine H., Soliman S.A., Morcos M.G. Colorimetric determination of dipyrone // Journal of Pharmaceutical Sciences. 1973. Vol. 62. No. 11. P. 1834-1836. DOI:https://doi.org/10.1002/jps.2600621121.
22. Suarez W.T. et al. Flow injection spectrophotometric determination of dipyrone in pharmaceutical formulations using Fe (III) as reagent // Analytical Letters. 2011. Vol. 44. No. 1-3. P. 340-348. DOI:https://doi.org/10.1080/00032719.2010.500777.
23. Lima J. L. F. C. et al. Multi-pumping flow system for the spectrophotometric determination of dipyrone in pharmaceutical preparations // Journal of Pharmaceutical and Biomedical analysis. 2003. Vol. 32. No. 4-5. P. 1011-1017. DOI:https://doi.org/10.1016/S0731-7085(03)00203-6.
24. da Costa Lopes F.C. et al. Development and validation of methods using derivative spectro-photometry for determination of dipyrone in pharmaceutical formulations // International Journal of Pharmaceutical Sciences and Research. 2018. Vol. 9. No. 6. P. 2201-2210. DOI:https://doi.org/10.13040/IJPSR.0975-8232.9(6).2201-10.
25. Abdel-Hadyá Elsayed M. et al. Application of difference spectrophotometry to the determination of dipyrone // Analyst. 1979. Vol. 104. No. 1239. P. 568-572.
26. Marcolino-Júnior L.H. et al. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using ammonium molybdate as chromogenic reagent // Analytical Letters. 2005. Vol. 38. No. 14. P. 2315-2326. DOI:https://doi.org/10.1080/15265160500316351.
27. Ribeiro P. C. et al. Determination of dipirone 500 mg by spectrophotometry of molecular absorption-UV, marketed in drugs // International Journal of Advanced Engineering Research and Science. 2019. Vol. 6. No. 6. P. 720-724. DOI:https://doi.org/10.22161/ijaers.6.6.83.
28. Bonifácio V., Filho O., Marcolino-Júnior L. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using a solid-phase reactor with copper (II) phosphate // Central European Journal of Chemistry. 2013. Vol. 11. No. 11. P. 1830-1836. DOI:https://doi.org/10.2478/s11532-013-0312-6.
29. Salih E.S., Al-Sharook M.M. Spectrophotometric Assay of Dipyrone in Pharmaceutical Preparations Via Oxidative Coupling Reaction with m-Toluidine and Potassium Hexacyanoferrate (III) // Journal of Education and Science. 2008. Vol. 21. No. 2. P. 28-38. DOI:https://doi.org/10.33899/edusj.2008.51237.