Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
The authors obtained a number of new sulfonylamides with isoxazole moiety by sulfonyl chlorination of bicyclic systems containing isoxazole heterocycle and interaction of the obtained sulfonyl chlorides with amino compounds. The authors also obtained isoxazole derivatives containing a sulfogroup in the isoxazole ring by sulfonyl chlorination of 3-aryl-5-N-acylaminoisoxazoles.
sulfonylamides, sulfonyl chlorination, regioselectivity, isoxazoles
1. Chinthakindi, P.K., Naicker, T., Thota, N., Govender, T., Kruger, H.G. & Arvidsson, P.I. (2017) Sulfonimidamides in Medicinal and Agricultural Chemistry, Angew. Chem. Int. Ed., 56, pp. 4100–4109. DOI:https://doi.org/10.1002/anie.201610456.
2. Abd El-Karim, S.S., Anwar, M.M., Syam, Y.M., Nael, M.A., Ali, H.F. & Motaleb M.A. (2018) Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies, Bioorg. Chem., 81, pp. 481–493. DOI:https://doi.org/10.1016/j.bioorg.2018.09.021.
3. Said, M.A., Eldehna, W.M., Nocentini, A., Fahim, S.H., Bonardi, A., Elgazar, A.A., Kryštof, V., Soliman, D.H., Abdel-Aziz, H.A., Gratteri, P., Abou-Seri, S.M. & Supuran, C.T. (2020) Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation, Eur. J. Med. Chem., 189. 112019. DOI:https://doi.org/10.1016/j.ejmech.2019.112019.
4. Moskalik, M.Y. (2023) Sulfonamides with Heterocyclic Periphery as Antiviral Agents, Molecules, 28(1), pp. 51. DOI:https://doi.org/10.3390/molecules28010051.
5. He F., Shi J., Wang Y., Wang S., Chen J., Gan X., Song B. & Hu D. (2019) Synthesis, Antiviral Activity, and Mechanisms of Purine Nucleoside Derivatives Containing a Sulfonamide Moiety, J. Agric. Food Chem., 67, pp. 8459–8467. DOI:https://doi.org/10.1021/acs.jafc.9b02681.
6. Jiang, D., Chen, J., Zan, N., Li, C., Hu, D. & Song, B. (2021) Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method, J. Agric. Food Chem., 69, pp. 12126–12134. DOI:https://doi.org/10.1021/acs.jafc.1c02467.
7. Delijewski, M. & Haneczok, J. (2021) AI drug discovery screening for COVID-19 reveals zafirlukast as a repurposing candidate, Med. Drug Discov., 9, pp. 100077. DOI:https://doi.org/10.1016/j.medidd.2020.100077.
8. White, K., Esparza, M., Liang, J., Bhat, P., Naidoo, J., McGovern, B.L., Williams, M.A.P., Alabi, B.R., Shay, J., Niederstrasser, H., Posner, B., García-Sastre, A., Ready, J. & Fontoura, B.M.A. (2021) Aryl Sulfonamide Inhibits Entry and Replication of Diverse Influenza Viruses via the Hemagglutinin Protein, J. Med. Chem., 64, pp. 10951–10966. DOI:https://doi.org/10.1021/acs.jmedchem.1c00304.
9. Shetnev, A.A., Volobueva, A.S., Panova, V.A., Zarubaev, V.V. & Baykov, S.V. (2022) Design of 4 Substituted Sulfonamidobenzoic Acid Derivatives Targeting Coxsackievirus B3, Life, 12, pp. 1832. DOI:https://doi.org/10.3390/life12111832.
10. Van Berkel, M.A. & Elefritz, J.L. (2018) Evaluating off-label uses of acetazolamide, Am. J. Health-Sys. Pharm., 75, pp. 524–531. DOI:https://doi.org/10.2146/ajhp170279.
11. Masaret, G.S. (2020) Synthesis, Docking and Antihypertensive Activity of Pyridone Derivatives, Chem. Select., 5, pp. 13995–14003. DOI:https://doi.org/10.1002/slct.202003959.
12. Dolensky, J., Hinteregger, C., Leitner, A., Seebacher, W., Saf, R., Belaj, F., Maser, P., Kaiser, M. & Weis, R. (2022) Antiprotozoal Activity of Azabicyclo-Nonanes Linked to Tetrazole or Sulfonamide Cores, Molecules, 27(19), pp. 6217. DOI:https://doi.org/10.3390/molecules27196217.
13. Khan, F., Mushtaq, S., Naz, S., Farooq, U., Zaidi, A., Bukhari, S., Rauf, A. & Mubarak, M. (2018) Sulfonamides as potential bioactive scaffolds, Curr. Org. Chem., 22, pp. 818–830. DOI:https://doi.org/10.2174/1385272822666180122153839.
14. Wan, Y., Fang, G., Chen, H., Deng, X. & Tang, Z. (2021) Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation, Eur. J. Med. Chem., 226, pp. 113837. DOI:https://doi.org/10.1016/j.ejmech.2021.113837.
15. Gul, H.I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D.O. & Supuran, C.T. (2018) New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors, Bioorg. Chem., 77, pp. 411–419. DOI:https://doi.org/10.1016/j.bioorg.2018.01.021.
16. Mirzaei, S., Eisvand, F., Hadizadeh, F., Mosaffa, F., Ghasemi, A. & Ghodsi, R. (2020) Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors, Bioorg. Chem., 98, pp. 103711. DOI:https://doi.org/10.1016/j.bioorg.2020.103711.
17. Abdel-Aziz, A.A.M., Angeli, A., El-Azab, A.S., Hammouda, M.E.A., El-Sherbeny, M.A. & Supuran, C.T. (2019) Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions, Bioorg. Chem., 84, pp. 260–268. DOI:https://doi.org/10.1016/j.bioorg.2018.11.033.
18. Ferraroni, M., Angeli, A., Pinteala, M. & Supuran, C.T. (2022) Sulfonamide diuretic azosemide as an efficient carbonic anhydrase inhibitor, J. Mol. Struct., 1268(133672). DOI:https://doi.org/10.1016/j.molstruc.2022.133672.
19. Shetnev, A., Shlenev, R., Efimova, J., Ivanovskii, S., Tarasov, A., Petzer, A. & Petzer, J.P. (2019) 1,3,4 Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B, Bioorg. Med. Chem. Lett., 29, pp. 126677. DOI:https://doi.org/10.1016/j.bmcl.2019.126677.
20. Ahmed, N.M., Lotfallah, A.H., Gaballah, M.S., Awad, S.M. & Soltan, M.K. (2023) Novel 2 Thiouracil 5 Sulfonamide Derivatives: Design, Synthesis, Molecular Docking, and Biological Evaluation as Antioxidants with 15-LOX Inhibition, Molecules, 28(4), pp. 1925. DOI:https://doi.org/10.3390/molecules28041925.
21. Kalinin, S., Kovalenko, A., Valtari, A., Nocentini, A., Gureev, M., Urtti, A., Korsakov, M., Supuran, C.T. & Krasavin, M. (2022) 5-(Sulfamoyl)thien-2-yl 1,3-oxazole inhibitors of carbonic anhydrase II with hydrophilic periphery, Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), pp. 1005-1011. DOI:https://doi.org/10.1080/14756366.2022.2056733.
22. Kletskov, A.V., Frontera, A., Sinelshchikova, A.A., Grigoriev, M.S., Zaytsev, V.P., Grudova, M.V., Bunev, A.S., Presnukhina, S., Shetnev, A. & Zubkov, F.I. 2020Straightforward Three-Component Synthesis of N′,N′′-Disubstituted N-Alkyl-1,3,5-Triazinanes, Synlett, 31, pp. 1067-1072. DOI:https://doi.org/10.1055/s-0039-1690900.
23. Bahez, Y.A. & Srood, O.R. (2022) Synthesis, Characterization, and Application of Metal-free Sulfonamide-Vitamin C Adduct to Improve the Optical Properties of PVA Polymer, Arabian Journal of Chemistry, 15(10), pp. 104096. DOI:https://doi.org/10.1016/j.arabjc.2022.104096.
24. Sorbera, L.A., Leeson, P., Castaner, J. & Castaner, R.M. (2001) Drugs of the Future, 26(2), pp. 133-140. DOI:https://doi.org/10.1358/dof.2001.026.02.610299.
25. Agatayev, P.A., Shlenev, M.R., Tarasov, A.V. & Rybina, G.V. (2020) Synthesis of 3-Cyanobenzen-1-Sulfonyl Chlorides, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 95–103. DOIhttps://doi.org/10.52957/27821900_2020_01_181 [online]. Available at: https://ystu.editorum.ru/ru/nauka/issue/5023/view (accessed 20.02.2024) (in Russian).