Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 547.814.1 Производные бензпирана, не содержащие другого кольца в молекуле, кроме бензпирановой системы (хромоны и т.д.)
The paper dwells on the formation and accumulation patterns of diastereomeric 2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones resulting from the acid-catalyzed condensation of dihydropyrimidin-2-thions with resorcinols.
2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidine-ones, acid-catalyzed condensation, monitoring
1. Kabanova, M.V., Makarova, E.S., Chirkova, Z.V. & Filimonov, S.I. (2021) Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles, From Chemistry Towards Technology Step-By-step, 2(1), pp. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111. Available at: http://chemintech.ru/index.php/tor/2021tom2no1.
2. Abramov, I.G. & Karpov, R.Z. (2020) Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62. Available at: http://chemintech.ru/index.php/tor/2020tom1n1.
3. Kotov, A.D., Kunichkina, A.S. & Proskurina, I.K. (2021) Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. Available at: http://chemintech.ru/index.php/tor/2021-2-4.
4. Marinescu, M. (2021) Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties, Molecules, 26(19), p. 6022. DOI:https://doi.org/10.3390/molecules26196022. Available at: https://www.mdpi.com/1420-3049/26/19/6022.
5. Bosica, G., Cachia, F., De Nittis, R. & Mariotti, N. (2021) Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction, Molecules, 26(12), p. 3753. DOI:https://doi.org/10.3390/molecules26123753. Available at: https://www.mdpi.com/1420-3049/26/12/3753.
6. Santosh, R. (2019) One-Pot Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives and Investigation of Their Antibacterial, Antioxidant, DNA-Binding and Voltammetric Characteristics, Chemistry Select, 4(3), pp. 990 996. DOI:https://doi.org/10.1002/slct.201803416. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201803416.
7. Metsämuuronen S. & Sirén, H. (2019) Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce, Phytochem. Rev. 18(3), pp. 623-664. DOI:https://doi.org/10.1007/s11101-019-09630-2. Available at: https://link.springer.com/article/10.1007/s11101-019-09630-2.
8. Quideau, S., Deffieux, D., Douat-Casassus, C. & Pouysègu, L. (2011) Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis, Angew. Chem., 50(3), pp. 586–621. DOI:https://doi.org/10.1002/anie.201000044. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201000044.
9. Emami, S. (2015) Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem., 102, pp. 611–630. DOI:https://doi.org/10.1016/j.ejmech.2015.08.033. Available at: https://www.sciencedirect.com/science/article/pii/S0223523415302178.
10. Bhosle, M.R., Wahul, D.B., Bondle, G.M., Sarkate, A. & Tiwari, S.V. (2018) An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2, 5-diones, Synth. Commun., 48(16), pp. 2046-2060. DOI:https://doi.org/10.1080/00397911.2018.1480042. Available at: https://www.tandfonline.com/doi/abs/10.1080/00397911.2018.1480042.
11. Kumari, S., Shakoor, S.A., Khullar, S., Mandal, S.K. & Sakhuja, R. (2018) An unprecedented tandem synthesis of fluorescent coumarin-fused pyrimidines via copper-catalyzed cross-dehydrogenative C (sp3)–N bond coupling, Org. Biomol. Chem, 16(17), pp. 3220-3228. DOI:https://doi.org/10.1039/C8OB00586A. Available at: https://pubs.rsc.org/en/content/articlelanding/2017/sc/c8ob00586a/unauth.
12. Patil, R.B. & Sawant, S.D. (2015) Synthesis, docking studies and evaluation of antimicrobial and in vitro antiproliferative activity of 5H-chromeno[4,3-d]pyrimidin-2-amine derivatives, Int. J. Pharm. Pharm. Sci., 7(2), pp. 304-308. Available at: https://innovareacademics.in/journals/index.php/ijpps/issue/ view/Vol7Issue2.
13. Rajanarendar, E., Reddy, M.N., Krishna, S.R., Murthy, K.R., Reddy, Y.N. & Rajam, M.V. (2012) Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolylpyrimido[4,5-b]quinolines and isoxazolylchromeno[2,3-d]pyrimidin-4-ones, Europ. J. Med. Chem., 55, pp. 273-283. DOI:https://doi.org/10.1016/j.ejmech.2012.07.029. Available at: https://www.sciencedirect.com/science/article/pii/ S0223523412004552
14. Filimonov, S.I., Chirkova, Zh.V., Kabanova, M.V., Makarova, E.S., Shetnev, A.A., Panova, V.A. & Suponitsky, K.Yu. (2019) A Condensation of Biginelli Products with 1,3-Benzenediols: a Facile Access to Diastereomerically Pure Hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones, J. Chemistry Select, 4(33), pp. 9550–9555. DOI:https://doi.org/10.1002/slct.201901997. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201901997.