Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 547.756 Оксопроизводные индола и индолина. Альдегиды. Экзо- и эзоциклические кетоны. Оксогетеровицинальные производные (Оксиндол. Изатин. Диоксиндол)
The paper concerns the development of the method for the preparation of functional isoindole-1,3-diones derivatives based on 5-nitro-4-phenacylphthalonitriles using Schmidt rearrangement.
sodium azide, 5-nitro-4-phenacylphthalonitriles, sulphuric acid, Schmidt rearrangement, isoindole-1,3-diones
1. Thigulla, Ya., Ranga, S., Ghosal, S., Subbalakshmi, J. & Bhattacharya, A. (2017) One-Pot Two Step Nazarov-Schmidt Rearrangement for the Synthesis of Fused δ-Lactam Systems, Chem. Select, 2(30), pp. 9744-9750. DOI:https://doi.org/10.1002/slct.201701848 [online]. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201701848 (accessed on 13.01.2022).
2. Bräse, S., Banert, K. (Eds.) (2010) Organic azides: syntheses and applications. John Wiley & Sons. DOI:https://doi.org/10.1002/9780470682517 [online]. Available at: https://onlinelibrary.wiley.com/doi/10.1002/9780470682517.ch4 (accessed on 22.01.2022).
3. Lang, S. & Murphy, J.A. (2006) Azide rearrangements in electron-deficient systems, Chem. Soc. Rev., 35(2), pp. 146-156. DOI:https://doi.org/10.1039/B505080D [online]. Available at: https://pubs.rsc.org/en/content/articlelanding/2006/cs/b505080d/unauth (accessed on 16.02.2022).
4. Ding, S. L., Ji, Y., Su, Y., Li, R. & Gu, P. (2019) Schmidt Reaction of ω-Azido Valeryl Chlorides Followed by Intermolecular Trapping of the Rearrangement Ions: Synthesis of Assoanine and Related Pyrrolophenanthridine Alkaloids, J. Org. Chem., 84(4), pp. 2012-2021. DOI:https://doi.org/10.1021/acs.joc.8b03018 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b03018 (accessed on 03.05.2022).
5. Nyfeler, E. & Renaud, Ph. (2006) Intramolecular Schmidt Reaction: Applications in Natural Product Synthesis, Chimia, 60(5), pp. 276-284. DOI:https://doi.org/10.2533/000942906777674714 [online]. Available at: https://chimia.ch/chimia/article/view/2006_276/3453 (accessed on 01.03.2022).
6. Zou, H., Zhou, L., Li, Y., Cui, Y., Zhong, H., Pan, Z., Yang, Zh. & Quan, J. (2010) Benzo[e]isoindole-1,3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). Synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode, J. Med. Chem., 53(3), pp. 994-1003. DOI:https://doi.org/10.1021/jm9013373 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/jm9013373 (accessed on 03.02.2022).
7. Figg, W.D., Raje, S., Bauer, K.S., Tompkins, A., Venzon, D., Bergan, R., Chen, A., Hamilton, M., Pluda, J. & Reed, E. (2000) Pharmacokinetics of thalidomide in an elderly prostate cancer population, J. Pharm. Sci., 88(1), pp. 121-125. DOI:https://doi.org/10.1021/js980172i [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1021/js980172i (accessed on 03.05.2022).
8. Ouenadio, F., Walchshofer, N., Trentesaux, C., Barret, R. & Paris, J. (2001) Synthesis and antiproliferative activity of [2-(phthaloylamino)alkyl]triphenyl phosphonium derivatives against K562 cell line, Anti-Cancer Drugs, 12(7), pp. 603-606. DOI:https://doi.org/10.1097/00001813-200108000-00007 [online]. Available at: https://journals.lww.com/anti-cancerdrugs/Abstract/2001/08000/Synthesis_and_antiproliferative_activity_of.7.aspx (accessed on 13.02.2022).
9. Sansom, G.N., Kirk, N.S., Guise, C.P., Anderson, R.F., Smaill, J.B., Patterson, A.V. & Kelso, M.J. (2019) Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study, Bioorg Med. Chem. Lett., 29(10), pp. 1215-1219. DOI:https://doi.org/10.1016/j.bmcl.2019.03.015 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X19301441 (accessed on 11.05.2022).
10. Lee, H.J., Lim, S.J., Oh, S.J., Moon, D.H., Kim, D.J., Tae, J. & Yoo, K.H. (2008) Isoindol-1,3-dione and isoindol-1-one derivatives with high binding affinity to β-amyloid fibrils, Bioorg. Med. Chem. Lett., 18(5), pp. 1628-1631. DOI:https://doi.org/10.1016/j.bmcl.2008.01.066 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X08000838 (accessed on 04.01.2022).
11. Chirkov, Z.V., Kabanova, M.V., Filimonov, S.I., Abramov, I.G., Petzer, A., Petzer, J.P., Firgang, S.I. & Suponitsky, K.Y. (2015) Inhibition of monoamine oxidase by indole-5, 6-dicarbonitrile derivatives, Bioorg. Med. Chem. Lett., 25(6), pp. 1206-1211. DOI:https://doi.org/10.1016/j.bmcl.2015.01.061 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X15000827 (accessed on 03.05.2021).
12. Meng, X.B., Han, D., Zhang, S.N., Guo, W., Cui, J.R. & Li, Z.J. (2007) Synthesis and anti-inflammatory activity of N-phthalimidomethyl 2, 3-dideoxy-and 2, 3-unsaturated glycosides, Carbohydr. Res., 342(9), pp. 1169-1174. DOI:https://doi.org/10.1016/j.carres.2007.03.009 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0008621507001334 (accessed on 03.12.2021).
13. Kabanova, M.V., Makarova, E.S., Chirkova, Z.V., & Filimonov, S.I. (2021) Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles, From Chemistry Towards Technology Step-By-Step, 2(1), pp. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111 [online]. Available at: http://chemintech.ru/index.php/tor/2021tom2no1 (accessed on 08.02.2021).
14. Abramov, I.G. & Karpov, R.Z. (2020) Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62 [online]. Available at: http://chemintech.ru/index.php/tor/ 2020tom1n1 (accessed on 03.05.2022).
15. Kotov, A.D., Kunichkina, A.S. & Proskurina, I.K. (2021) Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-4 (accessed on 11.011.2021).
16. Filimonov, S.I., Makarova, E.S., Chirkova, Z.V. & Kabanova, M.V. (2022) Diastereomeric composition of the reaction of the formation of hexahydro-5H-CHOMENO[4,3-D]PYRIDIN-5-ONES, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 131-138. DOI:https://doi.org/10.52957/27821900_2022_01_131 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (accessed on 03.03.2022).
17. Slastikhina, P.V., Chirkova, Z.V., Kabanova, M.V., Abramov, I.G., Filimonov, S.I., Begunov, R.S. & Suponitsky, K.Y. (2020) Synthesis of substituted isoindole-1,3-diones with an amide fragment using the Schmidt rearrangement, Rus. Chem. Bull., 69, pp. 2378-2382. DOI:https://doi.org/10.1007/s11172-020-3027-9 [online]. Available at: https://link.springer.com/article/10.1007/s11172-020-3027-9#citeas (accessed on 23.05.2021).
18. Desai, P., Schildknegt, K., Agrios, K.A., Mossman, C., Milligan, G.L. & Aube, J. (2000) Reactions of alkyl azides and ketones as mediated by Lewis acids: Schmidt and Mannich reactions using azide precursors, J. Am. Chem. Soc., 122(30), pp. 7226-7232. DOI:https://doi.org/10.1021/ja000490v [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/ja000490v (accessed on 03.05.2022).
19. Rokade, B.V., Prabhu, K.R. (2012) Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes, J. Org. Chem., 77(12), pp. 5364-5370. DOI:https://doi.org/10.1021/jo3008258 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/jo3008258 (accessed on 13.05.2022).
20. Filimonov, S.I., Chirkova, Z.V., Abramov, I.G., Firgang, S.I., Stashina, G.A., Strelenko, Y.A. & Suponitsky, K.Y. (2012) Base-induced transformations of ortho-nitrobenzylketones: intramolecular displacement of nitro group versus nitro-nitrite rearrangement, Tetrahedron, 68(30), pp. 5991-5997. DOI:https://doi.org/10.1016/j.tet.2012.05.034 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0040402012007260 (accessed on 01.05.2022).
21. Chirkova, Z.V., Kabanova, M.V., Filimonov, S.I., Abramov, I.G., Petzer, A., Petzer, J.P. & Suponitsky, K.Y. (2016) An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase, Bioorg. Med. Chem. Lett., 26(9), pp. 2214-2219. DOI:https://doi.org/10.1016/j.bmcl.2016.03.060 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X16302803 (accessed on 10. 04.2022).
22. Suthar, Sh.K., Aggarwal, V., Chauhan, M., Sharma, A., Bansal, S. & Sharma, M. (2015) Molecular docking and biological evaluation of hydroxysubstituted (Z)-3-benzylideneindolin-2-one chalcones for the lead identification as tyrosinase inhibitors, Med. Chem. Res., 24, pp. 1331–1341. DOI:https://doi.org/10.1007/s00044-014-1225-4 [online]. Available at: https://link.springer.com/article/10.1007/s00044-014-1225-4 (accessed on 11.05.2022).
23. Maroju, S., Podila, N.K., Velupula, G., Chittimalla, S. & Pasad, T.R. (2018) Synthesis and Characterization of New (Z)‐5‐((1 H‐1, 2, 4‐Triazol‐1‐yl)methyl)‐3‐arylideneindolin‐2‐ones, J. Heterocycl. Chem., 56(1), pp. 153-157. DOI:https://doi.org/10.1002/jhet.3389 [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jhet.3389 (accessed on 03.05.2022).
24. Tizzard, G.J., Coles, S.J., Edwards, M., Onyeabo, R.O., Allen, M. & Spencer, J. (2013) Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles, Chem. Central J., 7(1), pp. 1-10. DOI:https://doi.org/10.1186/1752-153X-7-182 [online]. Available at: https://bmcchem.biomedcentral.com/articles/10.1186/1752-153X-7-182 (accessed on 15.05.2022).