employee from 01.01.2009 until now
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
547.756
The paper concerns the development of the method for the preparation of functional isoindole-1,3-diones derivatives based on 5-nitro-4-phenacylphthalonitriles using Schmidt rearrangement.
sodium azide, 5-nitro-4-phenacylphthalonitriles, sulphuric acid, Schmidt rearrangement, isoindole-1,3-diones
1. Thigulla, Ya., Ranga, S., Ghosal, S., Subbalakshmi, J. & Bhattacharya, A. (2017) One-Pot Two Step Nazarov-Schmidt Rearrangement for the Synthesis of Fused δ-Lactam Systems, Chem. Select, 2(30), pp. 9744-9750. DOI:https://doi.org/10.1002/slct.201701848 [online]. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201701848 (accessed on 13.01.2022).
2. Bräse, S., Banert, K. (Eds.) (2010) Organic azides: syntheses and applications. John Wiley & Sons. DOI:https://doi.org/10.1002/9780470682517 [online]. Available at: https://onlinelibrary.wiley.com/doi/10.1002/9780470682517.ch4 (accessed on 22.01.2022).
3. Lang, S. & Murphy, J.A. (2006) Azide rearrangements in electron-deficient systems, Chem. Soc. Rev., 35(2), pp. 146-156. DOI:https://doi.org/10.1039/B505080D [online]. Available at: https://pubs.rsc.org/en/content/articlelanding/2006/cs/b505080d/unauth (accessed on 16.02.2022).
4. Ding, S. L., Ji, Y., Su, Y., Li, R. & Gu, P. (2019) Schmidt Reaction of ω-Azido Valeryl Chlorides Followed by Intermolecular Trapping of the Rearrangement Ions: Synthesis of Assoanine and Related Pyrrolophenanthridine Alkaloids, J. Org. Chem., 84(4), pp. 2012-2021. DOI:https://doi.org/10.1021/acs.joc.8b03018 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b03018 (accessed on 03.05.2022).
5. Nyfeler, E. & Renaud, Ph. (2006) Intramolecular Schmidt Reaction: Applications in Natural Product Synthesis, Chimia, 60(5), pp. 276-284. DOI:https://doi.org/10.2533/000942906777674714 [online]. Available at: https://chimia.ch/chimia/article/view/2006_276/3453 (accessed on 01.03.2022).
6. Zou, H., Zhou, L., Li, Y., Cui, Y., Zhong, H., Pan, Z., Yang, Zh. & Quan, J. (2010) Benzo[e]isoindole-1,3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). Synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode, J. Med. Chem., 53(3), pp. 994-1003. DOI:https://doi.org/10.1021/jm9013373 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/jm9013373 (accessed on 03.02.2022).
7. Figg, W.D., Raje, S., Bauer, K.S., Tompkins, A., Venzon, D., Bergan, R., Chen, A., Hamilton, M., Pluda, J. & Reed, E. (2000) Pharmacokinetics of thalidomide in an elderly prostate cancer population, J. Pharm. Sci., 88(1), pp. 121-125. DOI:https://doi.org/10.1021/js980172i [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1021/js980172i (accessed on 03.05.2022).
8. Ouenadio, F., Walchshofer, N., Trentesaux, C., Barret, R. & Paris, J. (2001) Synthesis and antiproliferative activity of [2-(phthaloylamino)alkyl]triphenyl phosphonium derivatives against K562 cell line, Anti-Cancer Drugs, 12(7), pp. 603-606. DOI:https://doi.org/10.1097/00001813-200108000-00007 [online]. Available at: https://journals.lww.com/anti-cancerdrugs/Abstract/2001/08000/Synthesis_and_antiproliferative_activity_of.7.aspx (accessed on 13.02.2022).
9. Sansom, G.N., Kirk, N.S., Guise, C.P., Anderson, R.F., Smaill, J.B., Patterson, A.V. & Kelso, M.J. (2019) Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study, Bioorg Med. Chem. Lett., 29(10), pp. 1215-1219. DOI:https://doi.org/10.1016/j.bmcl.2019.03.015 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X19301441 (accessed on 11.05.2022).
10. Lee, H.J., Lim, S.J., Oh, S.J., Moon, D.H., Kim, D.J., Tae, J. & Yoo, K.H. (2008) Isoindol-1,3-dione and isoindol-1-one derivatives with high binding affinity to β-amyloid fibrils, Bioorg. Med. Chem. Lett., 18(5), pp. 1628-1631. DOI:https://doi.org/10.1016/j.bmcl.2008.01.066 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X08000838 (accessed on 04.01.2022).
11. Chirkov, Z.V., Kabanova, M.V., Filimonov, S.I., Abramov, I.G., Petzer, A., Petzer, J.P., Firgang, S.I. & Suponitsky, K.Y. (2015) Inhibition of monoamine oxidase by indole-5, 6-dicarbonitrile derivatives, Bioorg. Med. Chem. Lett., 25(6), pp. 1206-1211. DOI:https://doi.org/10.1016/j.bmcl.2015.01.061 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X15000827 (accessed on 03.05.2021).
12. Meng, X.B., Han, D., Zhang, S.N., Guo, W., Cui, J.R. & Li, Z.J. (2007) Synthesis and anti-inflammatory activity of N-phthalimidomethyl 2, 3-dideoxy-and 2, 3-unsaturated glycosides, Carbohydr. Res., 342(9), pp. 1169-1174. DOI:https://doi.org/10.1016/j.carres.2007.03.009 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0008621507001334 (accessed on 03.12.2021).
13. Kabanova, M.V., Makarova, E.S., Chirkova, Z.V., & Filimonov, S.I. (2021) Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles, From Chemistry Towards Technology Step-By-Step, 2(1), pp. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111 [online]. Available at: http://chemintech.ru/index.php/tor/2021tom2no1 (accessed on 08.02.2021).
14. Abramov, I.G. & Karpov, R.Z. (2020) Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62 [online]. Available at: http://chemintech.ru/index.php/tor/ 2020tom1n1 (accessed on 03.05.2022).
15. Kotov, A.D., Kunichkina, A.S. & Proskurina, I.K. (2021) Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-4 (accessed on 11.011.2021).
16. Filimonov, S.I., Makarova, E.S., Chirkova, Z.V. & Kabanova, M.V. (2022) Diastereomeric composition of the reaction of the formation of hexahydro-5H-CHOMENO[4,3-D]PYRIDIN-5-ONES, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 131-138. DOI:https://doi.org/10.52957/27821900_2022_01_131 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (accessed on 03.03.2022).
17. Slastikhina, P.V., Chirkova, Z.V., Kabanova, M.V., Abramov, I.G., Filimonov, S.I., Begunov, R.S. & Suponitsky, K.Y. (2020) Synthesis of substituted isoindole-1,3-diones with an amide fragment using the Schmidt rearrangement, Rus. Chem. Bull., 69, pp. 2378-2382. DOI:https://doi.org/10.1007/s11172-020-3027-9 [online]. Available at: https://link.springer.com/article/10.1007/s11172-020-3027-9#citeas (accessed on 23.05.2021).
18. Desai, P., Schildknegt, K., Agrios, K.A., Mossman, C., Milligan, G.L. & Aube, J. (2000) Reactions of alkyl azides and ketones as mediated by Lewis acids: Schmidt and Mannich reactions using azide precursors, J. Am. Chem. Soc., 122(30), pp. 7226-7232. DOI:https://doi.org/10.1021/ja000490v [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/ja000490v (accessed on 03.05.2022).
19. Rokade, B.V., Prabhu, K.R. (2012) Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes, J. Org. Chem., 77(12), pp. 5364-5370. DOI:https://doi.org/10.1021/jo3008258 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/jo3008258 (accessed on 13.05.2022).
20. Filimonov, S.I., Chirkova, Z.V., Abramov, I.G., Firgang, S.I., Stashina, G.A., Strelenko, Y.A. & Suponitsky, K.Y. (2012) Base-induced transformations of ortho-nitrobenzylketones: intramolecular displacement of nitro group versus nitro-nitrite rearrangement, Tetrahedron, 68(30), pp. 5991-5997. DOI:https://doi.org/10.1016/j.tet.2012.05.034 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0040402012007260 (accessed on 01.05.2022).
21. Chirkova, Z.V., Kabanova, M.V., Filimonov, S.I., Abramov, I.G., Petzer, A., Petzer, J.P. & Suponitsky, K.Y. (2016) An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase, Bioorg. Med. Chem. Lett., 26(9), pp. 2214-2219. DOI:https://doi.org/10.1016/j.bmcl.2016.03.060 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X16302803 (accessed on 10. 04.2022).
22. Suthar, Sh.K., Aggarwal, V., Chauhan, M., Sharma, A., Bansal, S. & Sharma, M. (2015) Molecular docking and biological evaluation of hydroxysubstituted (Z)-3-benzylideneindolin-2-one chalcones for the lead identification as tyrosinase inhibitors, Med. Chem. Res., 24, pp. 1331–1341. DOI:https://doi.org/10.1007/s00044-014-1225-4 [online]. Available at: https://link.springer.com/article/10.1007/s00044-014-1225-4 (accessed on 11.05.2022).
23. Maroju, S., Podila, N.K., Velupula, G., Chittimalla, S. & Pasad, T.R. (2018) Synthesis and Characterization of New (Z)‐5‐((1 H‐1, 2, 4‐Triazol‐1‐yl)methyl)‐3‐arylideneindolin‐2‐ones, J. Heterocycl. Chem., 56(1), pp. 153-157. DOI:https://doi.org/10.1002/jhet.3389 [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jhet.3389 (accessed on 03.05.2022).
24. Tizzard, G.J., Coles, S.J., Edwards, M., Onyeabo, R.O., Allen, M. & Spencer, J. (2013) Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles, Chem. Central J., 7(1), pp. 1-10. DOI:https://doi.org/10.1186/1752-153X-7-182 [online]. Available at: https://bmcchem.biomedcentral.com/articles/10.1186/1752-153X-7-182 (accessed on 15.05.2022).