Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 547.756 Оксопроизводные индола и индолина. Альдегиды. Экзо- и эзоциклические кетоны. Оксогетеровицинальные производные (Оксиндол. Изатин. Диоксиндол)
The paper concerns the development of the method for the preparation of functional isoindole-1,3-diones derivatives based on 5-nitro-4-phenacylphthalonitriles using Schmidt rearrangement.
sodium azide, 5-nitro-4-phenacylphthalonitriles, sulphuric acid, Schmidt rearrangement, isoindole-1,3-diones
1. Thigulla Ya., Ranga S., Ghosal S., Subbalakshmi J., Bhattacharya A. One-Pot Two Step Nazarov-Schmidt Rearrangement for the Synthesis of Fused δ-Lactam Systems // Chem. Select. 2017. Vol. 2, iss. 30. P. 9744-9750. DOI:https://doi.org/10.1002/slct.201701848. URL: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201701848
2. Organic azides: syntheses and applications / S. Bräse, K. Banert (Eds.). John Wiley & Sons. 2010. DOI:https://doi.org/10.1002/9780470682517. URL: https://onlinelibrary.wiley.com/doi/10.1002/9780470682517.ch4
3. Lang S., Murphy J.A. Azide rearrangements in electron-deficient systems // Chem. Soc. Rev. 2006. Vol. 35, iss. 2. P. 146-156. DOI:https://doi.org/10.1039/B505080D. URL: https://pubs.rsc.org/en/content/articlelanding/2006/cs/b505080d/unauth
4. Ding S. L., Ji Y., Su Y., Li R., Gu P. Schmidt Reaction of ω-Azido Valeryl Chlorides Followed by Intermolecular Trapping of the Rearrangement Ions: Synthesis of Assoanine and Related Pyrrolophenanthridine Alkaloids // J. Org. Chem. 2019. Vol. 84, iss. 4. P. 2012-2021. DOI:https://doi.org/10.1021/acs.joc.8b03018. URL: https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b03018
5. Nyfeler E., Renaud Ph. Intramolecular Schmidt Reaction: Applications in Natural Product Synthesis // Chimia. 2006. Vol. 60, no. 5. P. 276-284. DOI:https://doi.org/10.2533/000942906777674714. URL: https://chimia.ch/chimia/article/view/2006_276/3453
6. Zou H., Zhou L., Li Y., Cui Y., Zhong H., Pan Z., Yang Zh., Quan J. Benzo[e]isoindole-1,3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). Synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode // J. Med. Chem. 2010. Vol. 53, iss. 3. P. 994-1003. DOI:https://doi.org/10.1021/jm9013373. URL: https://pubs.acs.org/doi/abs/10.1021/jm9013373
7. Figg W. D., Raje S., Bauer K. S., Tompkins A., Venzon, D., Bergan R., Chen A., Hamilton M., Pluda J., Reed E. Pharmacokinetics of thalidomide in an elderly prostate cancer population // J. Pharm. Sci. 2000. Vol. 88, iss. 1. P. 121-125. DOI:https://doi.org/10.1021/js980172i. URL: https://onlinelibrary.wiley.com/doi/abs/10.1021/js980172i
8. Ouenadio F., Walchshofer N., Trentesaux C., Barret R., Paris J. Synthesis and antiproliferative activity of [2-(phthaloylamino)alkyl]triphenyl phosphonium derivatives against K562 cell line // Anti-Cancer Drugs. 2001. Vol. 12, iss. 7. P. 603-606. DOI:https://doi.org/10.1097/00001813-200108000-00007. URL: https://journals.lww.com/anti-cancerdrugs/Abstract/2001/08000/Synthesis_and_antiproliferative_activity_of.7.aspx
9. Sansom G. N., Kirk N. S., Guise C. P., Anderson R. F., Smaill J. B., Patterson A. V., Kelso M. J. Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study // Bioorg Med. Chem. Lett. 2019. Vol. 29, iss. 10. P. 1215-1219. DOI:https://doi.org/10.1016/j.bmcl.2019.03.015. URL: https://www.sciencedirect.com/science/article/pii/S0960894X19301441
10. Lee H. J., Lim S. J., Oh S. J., Moon D. H., Kim D. J., Tae J., Yoo K. H. Isoindol-1,3-dione and isoindol-1-one derivatives with high binding affinity to β-amyloid fibrils // Bioorg. Med. Chem. Lett. 2008. Vol. 18, iss. 5. P. 1628-1631. DOI:https://doi.org/10.1016/j.bmcl.2008.01.066. URL: https://www.sciencedirect.com/science/article/pii/S0960894X08000838
11. Chirkova Z.V., Kabanova M.V., Filimonov S.I., Abramov I.G., Petzer A., Petzer J.P., Firgang S.I., Suponitsky K. Y. Inhibition of monoamine oxidase by indole-5, 6-dicarbonitrile derivatives // Bioorg. Med. Chem. Lett. 2015. Vol. 25, iss. 6. P. 1206-1211. DOI:https://doi.org/10.1016/j.bmcl.2015.01.061. URL: https://www.sciencedirect.com/science/article/pii/S0960894X15000827
12. Meng X. B., Han D., Zhang S. N., Guo W., Cui J. R., Li Z. J. Synthesis and anti-inflammatory activity of N-phthalimidomethyl 2, 3-dideoxy-and 2, 3-unsaturated glycosides // Carbohydr. Res. 2007. Vol. 342, iss. 9. P. 1169-1174. DOI:https://doi.org/10.1016/j.carres.2007.03.009. URL: https://www.sciencedirect.com/science/article/pii/S0008621507001334.
13. Kabanova M.V., Makarova E.S., Chirkova Z.V., Filimonov S.I. Simplified method for obtaining 3 bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 1. P. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111. URL: http://chemintech.ru/index.php/tor/2021tom2no1
14. Abramov I.G., Karpov R.Z. Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile // From Chemistry Towards Technology Step-By-Step. 2020. Vol. 1, no. 1. P. 62-67. DOIhttps://doi.org/10.52957/27821900_2020_01_62. URL: http://chemintech.ru/index.php/tor/2020tom1n1
15. Kotov A.D., Kunichkina A.S., Proskurina I.K. Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 4. P. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. URL: http://chemintech.ru/index.php/tor/2021-2-4
16. Filimonov S.I., Makarova E.S., Chirkova Z.V., Kabanova M.V. Diastereomeric composition of the reaction of the formation of hexahydro-5H-chomeno[4,3-d]pyridin-5-ones // From Chemistry Towards Technology Step-By-Step. 2022. Vol. 3, no. 1. P. 131-138. DOI:https://doi.org/10.52957/27821900_2022_01_131. URL: http://chemintech.ru/index.php/tor/2022tom3no1
17. Slastikhina P.V., Chirkova Z.V., Kabanova M.V., Abramov I.G., Filimonov S.I., Begunov R.S., Suponitsky K.Y. Synthesis of substituted isoindole-1,3-diones with an amide fragment using the Schmidt rearrangement // Rus. Chem. Bull. 2020. Vol. 69. P. 2378-2382. DOI:https://doi.org/10.1007/s11172-020-3027-9. URL: https://link.springer.com/article/10.1007/s11172-020-3027-9#citeas
18. Desai P., Schildknegt K., Agrios K.A., Mossman C., Milligan G.L., Aube J. Reactions of alkyl azides and ketones as mediated by Lewis acids: Schmidt and Mannich reactions using azide precursors // J. Am. Chem. Soc. 2000. Vol. 122, iss. 30. P. 7226-7232. DOI:https://doi.org/10.1021/ja000490v. URL: https://pubs.acs.org/doi/abs/10.1021/ja000490v
19. Rokade B.V., Prabhu K.R. Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes // J. Org. Chem. 2012. Vol. 77, iss. 12. P. 5364-5370. DOI:https://doi.org/10.1021/jo3008258. URL: https://pubs.acs.org/doi/abs/10.1021/jo3008258
20. Filimonov S.I., Chirkova Z.V., Abramov I.G., Firgang S.I., Stashina G.A., Strelenko Y.A., Suponitsky K.Y. Base-induced transformations of ortho-nitrobenzylketones: intramolecular displacement of nitro group versus nitro-nitrite rearrangement // Tetrahedron. 2012. Vol. 68, iss. 30. P. 5991-5997. DOI:https://doi.org/10.1016/j.tet.2012.05.034. URL: https://www.sciencedirect.com/science/article/pii/S0040402012007260
21. Chirkova Z.V., Kabanova M.V., Filimonov S.I., Abramov I.G., Petzer A., Petzer J.P., Suponitsky K.Y. An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase // Bioorg. Med. Chem. Lett. 2016. Vol. 26, iss. 9. P. 2214-2219. DOI:https://doi.org/10.1016/j.bmcl.2016.03.060. URL: https://www.sciencedirect.com/science/article/pii/S0960894X16302803
22. Suthar Sh.K., Aggarwal V., Chauhan M., Sharma A., Bansal S., Sharma M. Molecular docking and biological evaluation of hydroxysubstituted (Z)-3-benzylideneindolin-2-one chalcones for the lead identification as tyrosinase inhibitors // Med. Chem. Res. 2015. Vol. 24. P. 1331–1341. DOI:https://doi.org/10.1007/s00044-014-1225-4. URL: https://link.springer.com/article/10.1007/s00044-014-1225-4
23. Maroju S., Podila N.K., Velupula G., Chittimalla S., Pasad T.R. Synthesis and Characterization of New (Z)‐5‐((1 H‐1, 2, 4‐Triazol‐1‐yl)methyl)‐3‐arylideneindolin‐2‐ones // J. Heterocycl. Chem. 2018. Vol. 56, iss. 1. P. 153-157. DOI:https://doi.org/10.1002/jhet.3389. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jhet.3389
24. Tizzard G.J., Coles S.J., Edwards M., Onyeabo R.O., Allen M., Spencer J. Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles // Chem. Central J. 2013. Vol. 7, no. 1. P. 1-10. DOI:https://doi.org/10.1186/1752-153X-7-182. URL: https://bmcchem.biomedcentral.com/articles/10.1186/1752-153X-7-182.