from 01.01.1974 until now
Yaroslavl, Yaroslavl, Russian Federation
Volgograd, Volgograd, Russian Federation
Moscow, Moscow, Russian Federation
Volzhskiy, Vologda, Russian Federation
The paper presents the kinetic model of polymer thermodegradation as applied to the process of pyrolysis of worn-out tyres and waste rubber products in an industrial reactor. We calculated the quantum-chemical changes of thermodynamic functions for the probable chemical reactions of mesh elastomer degradation. Solid fraction (carbon black and metal wastes) and vapor-gas mixture separated into three hydrocarbon fractions considered as the reaction products. We use a formal kinetic scheme when describing the kinetics of rubber degradation. It shows the mechanism of the process as a set of radical-chain reactions of polymer degradation. Each hydrocarbon fraction corresponds to a certain set of kinetic constants, the temperature dependences of which are assumed to be Arrhenius. The satisfactory agreement of the obtained calculated thermogravimetric de-pendences with the experimental data of different authors allowed us to approximate the rubber thermal degradation curves by the curves characterizing the general-purpose rubbers.
worn tyres, rubber waste, pyrolysis, kinetic model, quantum-chemical calculation
1. Bandyopadhyay, S., Agrawal, S.L., Ameta, R., Dasgupta, S., Mukhopadhyay, R., Deuri, A.S. & Suresh, C. (2008) An Overview of Rubber Recycling, Progress in Rubber, Plastics and Recycling Technology, 24(2), pp. 73-112 [online]. Available at: https://doi.org/10.1177/147776060802400201
2. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H. & Balas, A. (2012) Progress in used tyres management in the European Union: A review, Waste Management, 32(10), pp. 1742-1751 [online]. Available at: https://doi.org/10.1016/j.wasman.2012.05.010
3. Myhre, M., Saiwari, S., Dierkes, W. & Noordermeer, J. (2012) Rubber recycling: chemistry, processing, and applications, Rubber Chemistry and Technology, 85(3), pp. 408–449 [online]. Available at: https://doi.org/10.5254/rct.12.87973
4. Roy, C., Chaala, A. & Darmstadt, H. (1999) The vacuum pyrolysis of used tires: End-uses for oil and carbon black products, Journal of Analytical and Applied Pyrolysis, 51(1-2), pp. 201-221 [online]. Available at: https://doi.org/10.1016/S0165-2370(99)00017-0
5. Kaminsky, W., Mennerich, C. & Zhang, Z. (2009) Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed, Journal of Analytical and Applied Pyrolysis, 85(1-2), pp. 334-337 [online]. Available at: https://doi.org/10.1016/j.jaap.2008.11.012
6. Czajczyńska, D., Czajka, K., Krzyżyńska & R., Jouhara, H. (2020) Waste tyre pyrolysis – Impact of the process and its products on the environment, Thermal Science and Engineering Progress, 20, 100690 [online]. Available at: https://doi.org/10.1016/j.tsep.2020.100690
7. Khalil, U., Vongsvivut, J., Shahabuddin, M., Samudrala, S.P., Srivatsa, S.C. & Bhattacharya, S. (2020) A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor, Waste Management, 102, pp. 139-148 [online]. Available at: https://doi.org/10.1016/j.wasman.2019.10.029
8. Hijazi, A., Al-Muhtaseb, A.H., Aouad, S., Ahmad, M.N. & Zeaiter, J. (2019) Pyrolysis of Waste Rubber Tires with Palladium Doped Zeolite, Journal of Environmental Chemical Engineering, 7(6), 103451 [online]. Available at: https://doi.org/10.1016/j.jece.2019.103451
9. Wang, F., Gao, N., Quan, C. & López, G. (2019) Investigation of Hot Char Catalytic Role in the Pyrolysis of Waste Tires in a Two-step Process, Journal of Analytical and Applied Pyrolysis, 146, 104770 [online]. Available at: https://doi.org/10.1016/j.jaap.2019.104770
10. Islam, M.R., Parveen, M., Haniu, H. & Sarker, M.R.I. (2010) Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energy and Environment, International Journal of Environmental Science and Development, 1(1), pp. 89-96. DOI:https://doi.org/10.7763/IJESD.2010.V1.18.
11. Yaqoob, H., Teoh, Y.H., Ahmad, M. & Gulzar, M. (2021) Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review, Journal of the Energy Institute, 96, pp. 205-221 [online]. Available at: https://doi.org/10.1016/j.joei.2021.03.002
12. Mikulski, M., Ambrosewicz-Walacik, M., Hunicz, J. & Nitkiewicz, S. (2021) Combustion engine applications of waste tyre pyrolytic oil, Progress in Energy and Combustion Science, 85, 100915 [online]. Available at: https://doi.org/10.1016/j.pecs.2021.100915
13. Yaqoob, H., Teoh, Y.H., Sher, F., Jamil, M.A., Nuhanović, M., Razmkhah, O. & Erten, B. (2021) Tribological Behaviour and Lubricating Mechanism of Tire Pyrolysis Oil, Coatings, 11, 386, pp. 1-13 [online]. Available at: https://doi.org/10.3390/coatings11040386
14. Kyari, M., Cunliffe, A. & Williams, P.T. (2005) Characterization of Oils, Gases, and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires, Energy & Fuels, 19, pp. 1165-1173. URL: https://doi.org/10.1021/ef049686x
15. Pavlova, A., Stratiev, D., Mitkova, M., Stanulov, K., Dishovsky, N. & Georgiev, K. (2015) Gas Chromatography-Mass Spectrometry for Characterization of Liquid Products from Pyrolysis of Municipal Waste and Spent Tyres, Acta Chromatographica, 1, pp. 1-19 [online]. Available at: https://doi.org/10.1556/achrom.27.2015.4.5
16. Campuzano, F., Jameel, A.G.A, Zhang, W., Emwas, A.-H., Agudelo, A.F., Martínez, J.D. & Mani Sara-thy, S.M. (2020) Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived from a Continuous Twin-Auger Reactor, Energy & Fuels, 34(10), pp. 12688–12702 [online]. Available at: https://doi.org/10.1021/acs.energyfuels.0c02271
17. Abedeen, A., Hossain, M.S., Som, U. & Moniruzzaman, M.D. (2021) Catalytic cracking of scrap tire-generated fuel oil from pyrolysis of waste tires with zeolite ZSM-5, International journal of sustainable engineering, 14(6), pp. 2025-2040 [online]. Available at: https://doi.org/10.1080/19397038.2021.1951883
18. Mkhize, N.M., Danon, B., van der Gryp, P. & Görgens, J.F. (2019) Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production, Chemical Engineering Research and Design, 152, pp. 363–371 [online]. Available at: https://doi.org/10.1016/j.cherd.2019.09.036
19. Nkosi, N., Muzenda, E., Mamvura, T.A., Belaid, M. & Patel, B. (2020) The Development of a Waste Tyre Pyrolysis Production Plant Business Model for the Gauteng Region, South Africa, Processes, 8(7), pp. 766-774 [online]. Available at: https://doi.org/10.3390/pr8070766
20. Rani, S. & Agnihotri, R. (2014) Recycling of scrap tyres, International Journal of Materials Science and Applications, 3(5), pp. 164-167 [online]. Available at: https://doi.org/10.11648/j.ijmsa.20140305.16
21. Hohenberg, P. & Kohn, W. (1964) Inhomogeneous Electron Gas, Phys. Rev., 136, 3B, pp. B864-B871 [online]. Available at: https://doi.org/10.1103/PhysRev.136.B864
22. Kohn, W. & Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, 4A, pp. A1133-A1138 [online]. Available at: https://doi.org/10.1103/PhysRev.140.A1133
23. Becke, A.D. (1993) Densityfunctional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98(7), pp. 5648–5652 [online]. Available at: https://doi.org/10.1063/1.462066
24. Neese, F. (2017) Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 8, e1327 [online]. Available at: https://doi.org/10.1002/wcms.1327
25. Broyden, C.G. (1970) The convergence of a class of double-rank minimization algorithms, Journal of Applied Mathematics, 6, pp. 76–90 [online]. Available at: https://doihttps://doi.org/10.1093/imamat/6.1.76
26. Fletcher, R.A. (1970) New Approach to Variable Metric Algorithms, Computer Journal, 13(3), pp. 317–322 [online]. Available at: https://doihttps://doi.org/10.1093/comjnl/13.3.317
27. Goldfarb, D.A. (1970) Family of Variable-metric methods Updates Derived by Variational Means, Mathematics of Computation, 24(109), pp. 23–26 [online]. Available at: https://doihttps://doi.org/10.1090/S0025-5718-1970-0258249-6
28. Shanno, D.F. (1970) Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, 24(111), pp. 647–656 [online]. Available at: https://doihttps://doi.org/10.1090/S0025-5718-1970-0274029-X
29. Mueller, M. (2002) Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computation. New York (NY): Kluwer Academic publisher [online]. Available at: https://doi.org/10.1063/1.1535013
30. Varvarkin, S.V., Soloviev, M.E. & Gerasimova, N.P. (2022) Quantum-chemical study of the carboxylation reaction of 4-aminophenol, 4-acetylaminophenol and their salts in the synthesis of 5-aminosalicylic acid, From Chemistry Towards Technology Step-By-Step, 3(3), pp. 27-33. DOI:https://doi.org/10.52957/27821900_2022_03_27 [online]. Available at: https://drive.google.com/file/d/1k3uNF_opZcwn_-W9gFfgZ6o4PLJ3BBSf/view (in Russian).
31. Lin, J.-P., Chip Yuan, Chang, C., Wu, C.-H. & Shih, S.-M. (1996) Thermal degradation kinetics of polybutadiene rubber, Polymer Degradation and Stability, 53, pp. 295-300 [online]. Available at: https://doi.org/10.1016/0141-3910(96)00098-5
32. McCreedy, K. & Keskkula, H. (1979) Effect of thermal crosslinking on decomposition of polybutadiene, Polymer, 20, pp. 1155-1159 [online]. Available at: https://doi.org/10.1016/0032-3861(79)90309-4