Ivanovo, Ivanovo, Russian Federation
Ivanovo, Ivanovo, Russian Federation
Ivanovo, Ivanovo, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
UDK 544.353.2 Сольватация. Сольватная оболочка. Влияние оболочки. Эффект клетки
UDK 544.582.6 Изотопные эффекты
UDK 546.212.027 Тяжелая вода D2O
The paper considers the measurements of densities the pharmaceutical “teotro-pine” or tetramethylenediethylenetetramine (TMDETA) solutions in heavy water (D2O) with the solute molality from (0.01 to 0.12) mol∙(kg solvent) 1 at T = (278.15, 288.15, 298.15, 308.15, and 318.15) K and ambient pressure (p = 0.1 MPa). The uncertainty in density measured using the Anton Paar DMA 5000 M densimeter (equipped with oscillating U-tube) was 0.03 kg m-3 or lower. We obtain the standard (at infinite dilution) molar volumes and isobaric expansibilities of TMDETA as a solute in D2O, along with the corresponding solvent D2O–H2O isotope effects (IEs). We define the isotope effects using the previously ob-tained data on volumetric properties of the system (H2O + TMDETA). We also find that the insignificant IEs in the standard molar volume of TMDETA increase with increasing temperature. Based on the analysis of contributions to the standard molar volume of TMDETA in terms of the Scaled Particle Theory (SPT) we confirm that a bulkier molecule of this solute interacts with water (especially, in D2O) actively than it does with a molecule of hexamethylenetetramine (HMTA) or pharmaceutical “urotropine” being the related aminal (cage-like) compound. The colloborating discussion of volume- and enthalpy-isotope characteristics of TMDETA (and HMTA) hydration within the scope of SPT led us to the conclusion that the structure matrix of D2O is more efficient for incorporat-ing the bulkier TMDETA molecule into it
teotropine, standard volume and expansibility, standard enthalpy of dissolution, ordinary and heavy water, solvent H/D isotope effect
1. Zwier, J.M., Brouwer, A.M., Buma, W.J., Troisi, A. & Zerbetto, F. (2002) Structure and photophysics of an old, new molecule: 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane, J. Am. Chem. Soc., (124), pp. 149-158. DOI:https://doi.org/10.1021/ja016971b.
2. Ivanov, E.V. (2018) Temperature-dependent standard volumetric properties of hexamethylenetetramine in ordinary and deuterated water: A study resolving debatable issues being commented in the [Journal of Molec-ular Liquids, 248 (2017) 48-52], J. Mol. Liq., (272), pp. 218-225. DOI:https://doi.org/10.1016/j.molliq.2018.09.046.
3. Vasil’ev, D.A., Khairullin, I.N., Zolotukhin, S.N., Feoktistova, N.A. & Kuryanova, N.Kh. (2011) Study of the bactericidal and bacteriostatic action of teotropine on microorganisms of various morphological structures, Vestnik Ul’yanovskoi GSKhA, 1(13), pp. 75-78 (in Russian).
4. Balysheva, V.I., Nesterov, E.A., Lunitsin, A.V., Zhivoderov, S.P., Gorshkova, T.F., Lapteva, O.G., Balyshev, V.M. & Kolbasov, D.V. (2013) Efficacy of a trivalent inactivated vaccine against bluetongue in both cattle and small ruminants, Doklady Ross. akad. selskokhoz. nauk, (39), pp. 516-518. DOI:https://doi.org/10.3103/S1068367413050030 (in Russian).
5. Blanco, L.H. & Dávila, M.T. (2010) Osmotic and activity coefficients of two macrocyclic aminals in aqueous solution at 288.15, 293.15, 298.15 and 303.15 K, Fluid Phase Equil., (293), pp. 237-241. DOI:https://doi.org/10.1016/j.fluid.2010.03.012.
6. Romero, C.M. & Mesa, H.J. (2017) Effect of temperature on the partial molar volumes and viscosities of two macrocyclic aminals in water and deuterium oxide, J. Mol. Liq., (242), pp. 244-248. DOI:https://doi.org/10.1016/j.molliq.2017.06.101.
7. Ivanov, E.V., Batov, D.V., Lebedeva, E.Yu. & Baranov, V.V. (2021) Some interaction-related thermodynamic properties of aqueous tetramethylenediethylenetetramine (drug teotropine) solutions: Effect of the solvent H/D isotope substitution and temperature, J. Mol. Liq., (326), pp. 115274/1-115274/8. DOI:https://doi.org/10.1016/j.molliq.2020.115274.
8. Blanco, L.H. & Sanabria, N.R. (2007) Solubility of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) in water at temperatures between 275 K and 303 K, J. Chem. Eng. Data, (52), pp. 2288-2290. DOI:https://doi.org/10.1021/je700304z.
9. Salamanca, Y.P., Blanco, L.H. & Vargas E.F. (2013) Enthalpies of solution of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane in aqueous solution as a function of concentration and temperature, J. Therm. Anal. Calorim., (114), pp. 451-455. DOI:https://doi.org/10.1007/s10973-012-2870-9.
10. Ivanov, E.V. & Batov, D.V. (2019) Unusual behavior of temperature-dependent solvent H/D isotope effects in the enthalpy and heat capacity of hexamethylenetetramine (urotropine) hydration, J. Mol. Liq., (285), pp. 508 514. DOI:https://doi.org/10.1016/j.molliq.2019.04.104.
11. Soper, A.K. & Benmore, C.J. (2008) Quantum differences between heavy and light water, Phys. Rev. Lett., (101), pp. 065502/1-065502/4. DOI:https://doi.org/10.1103/PhysRevLett.101.065502.
12. Ivanov, E.V. (2017) Some comments on the paper “Effect of temperature on the partial molar volumes and viscosities of two macrocyclic aminals in water and deuterium oxide” by Carmen M. Romero and Holman J. Mesa [Journal of Molecular Liquids, 242 (2017) 244-248], J. Mol. Liq., (248), pp. 48-52. DOI:https://doi.org/10.1016/j.molliq.2017.09.125
13. Ivanov, E.V., Lebedeva, E.Y., Baranov, V.V. & Kravchenko, A.N. (2022) Volume properties of tetramethylenediethylenetetramine (pharmaceutical teotropine) in aqueous solutions between 278.15 and 318.15 K, J. Mol. Liq., (174), pp. 106-860/1-106860/6. DOI:https://doi.org/10.1016/j.jct.2022.106860.
14. Ansari, M.S. & Hafiz-ur-Rehman (2011) Aquamolality: a useful concentration unit, Phys. Chem. Liq.: Int. J., (49), pp. 743-745. DOI:https://doi.org/10.1080/00319104.2010.509723.
15. Abrosimov, V.K. & Ivanov, E.V. (2011) Densimetry of solutions. Theoretical and Experimental Methods of Solution Chemistry, Moscow: Prospekt (in Russian).
16. Ivanov, E.V. (2021) The solvomolality concept as a step in developing the ideas of structure-thermodynamic characteristics of solutions: dedicated to the anniversaries of the birth of G.A. Krestov and the foundation of the institute of solution chemistry of RAS being named after him, Izv. Vuzov. Khimiya i Khim. Theknol., 64(10), pp. 6-15. DOI:https://doi.org/10.6060/ivkkt.20216410.6461 (in Russian).
17. Wüzburger, S., Sartorio, R., Guarino, G. & Nisi, M. (1988) Volumetric properties of aqueous solutions of polyols between 0.5 and 25°C, J. Chem. Soc., Faraday Trans., 1(84), pp. 2279-2287. DOI:https://doi.org/10.1039/F19888402279.
18. Ivanov, E.V., Lebedeva, E.Yu., Petrovskaya, S.G., Baranov, V.V., Kravchenko, A.N. & Ivanova, N.G. (2017) Volume-related interaction parameters for dilute solutions of Mebicaret (2,4-dimethyl-6,8-diethylglycoluril) in normal and heavy water between 278.15 K and 318.15 K, J. Mol. Liq., (242), pp. 160-167. DOI:https://doi.org/10.1016/j.molliq.2017.07.003.
19. Mak, T.C.W. (1965) Hexamethylenetetramine hexahydrate: a new type of clathrate hydrate, J. Chem. Phys., (43), pp. 2799-2805. DOI:https://doi.org/10.1063/1.1697212.
20. Kell, G.S. (1977) Effect of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water, J. Phys. Chem. Ref. Data, (6), pp. 1109-1131. DOI:https://doi.org/10.1063/1.555561.
21. Lepori, L. & Gianni, P. (2000) Partial molar volumes of ionic and nonionic organic solvents in water: a simple additivity scheme based on the intrinsic volume approach, J. Solution Chem., (29), pp. 405-447. DOI:https://doi.org/10.1023/A:1005150616038.
22. Kuz’min, V.S. & Katser, S.B. (1992) Calculation of the Van der Waals volumes of organic molecules, Izv. RAN. Ser. khim., (41), pp. 720-729. DOI:https://doi.org/10.1007/BF01150899 (in Russian).
23. Hepler, L.G. (1969) Thermal expansion and structure in water and aqueous solutions, Can. J. Chem., (47), pp. 4613-4617. DOI:https://doi.org/10.1139/v69-762.
24. Pierotti, R.A. (1976) A scaled particle theory of aqueous and nonaqueous solutions, Chem. Rev., (76), pp. 717 726. DOI:https://doi.org/10.1021/cr60304a002.
25. Ivanov E.V. (2012) Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolyte, J. Chem. Thermodyn., 47, pp. 437-440. DOI:https://doi.org/10.1016/j.jct.2011.11.018.
26. Malenkov, G.G. & Toryanik, A.I. (1976) Molecular structure of aqueous solutions of hexamethylenetetramine, Zhurn. strukt. khimii, (17), pp. 46-49. DOI:https://doi.org/10.1007/BF00748391 (in Russian).
27. Kuznetsov, A.I., Shukkur, A.H. & Kamara, K. (2008) Synthesis of 4,5-dihydro-1,6:3,8-dimethano-1,3,6,8-benzotetrazecine, Izv. RAN. Ser. khim., (57), pp. 1575-1577. DOI:https://doi.org/10.1007/s11172-008-0205-6 (in Russian).
28. Peori, M.B., Vaughan, K. & Hooper, D. (1998) Synthesis and characterization of novel bis-triazenes: 3,8-di[2-aryl-1-azenyl]-1,3,6,8-tetraazabicyclo[4.4.1]undecanes and 1,3-di-2-[(4-methoxyphenyl)-1-diazenyl] imidazoli-dine. The reaction of diazonium ions with ethylenediamine/formaldehyde mixtures, J. Org. Chem., (63), pp. 7437-7444. DOI:https://doi.org/10.1021/jo981276g.
29. Clavijo, J.A. & Blanco, L.H. (2012) Effect of two macrocyclic aminals on the temperature of maximum density of water, J. Solution Chem., (41), pp. 680-689. DOI:https://doi.org/10.1007/s10953-011-9736-9.
30. Wagner, Z., Bendová, M., Rotrekl, J., Sýkorová, A., Čanji, M. & Parmar, N. (2021) Density and sound velocity measurement by an Anton Paar DSA 5000 density meter: Precision and long-time stability, J. Mol. Liq., (329), pp. 155547/-155547/17. DOI:https://doi.org/10.1016/j.molliq.2021.115547.