Yaroslavl, Yaroslavl, Russian Federation
Izuchena termodinamika processa rastvoreniya butadiena-1,3 v vodno-ammiachnyh rastvorah nitrata kaliya v intervale temperatur 20-80 °S. Na osnovanii poluchennyh dannyh bylo ustanovleno, chto rastvorimost' butadiena-1,3 v vodno-ammiachnyh rastvorah podchinyaetsya zakonu Genri. Pokazano, chto nitrat kaliya okazyvaet vysalivayuschee deystvie na rastvorimost' butadiena-1,3, kotoryy umen'shaetsya s povysheniem temperatury. Dobavlenie ammiaka k vode i vodnym rastvoram nitrata kaliya uvelichivaet rastvorimost' butadiena-1,3. Opredeleny termodinamicheskie funkcii processa rastvoreniya butadiena-1,3 i termodinamicheskie harakteristiki gidratirovannogo uglevodoroda v vodno-ammiachnyh rastvorah nitrata kaliya. Uvelichenie teploty rastvoreniya butadiena-1,3 v vodno-ammiachnom rastvore nitrata kaliya podtverzhdaet predpolozhenie ob obrazovanii vodorodnoy svyazi mezhdu atomami vodoroda molekuly ammiaka i π-elektronami butadiena-1,3. Sravnenie chislennyh znacheniy termodinamicheskih funkciy processa rastvoreniya butadiena-1,3 i 2-metilpropena pokazalo, chto s uvelicheniem stepeni nenasyschennosti molekuly uvelichivaetsya kak izmenenie ental'pii, tak i izmenenie entropii.
termodinamicheskie harakteristiki, butadien 1,3, rastvorimost', vodno-ammiachnye rastvory, nitrat kaliya, vysalivanie, koefficienty Genri
1. Smirnova E.A. Ustoychivost' kompleksnyh soedineniy ionov serebra (I) i medi (I) s nenasyschennymi uglevodorodami i ammiakom // Ot himii k tehnologii shag za shagom. 2020. T. 1, vyp. 1. S. 57-62. DOI:https://doi.org/10.52957/27821900_2020_01_56. URL: http://chemintech.ru/index.php/tor/2020tom1n1
2. Smirnova E.A., Latypova O.I., Pobegalova D.N. Izuchenie rastvorimosti nenasyschennyh uglevodorodov v vodnyh i vodno-ammiachnyh rastvorah elektrolitov // Izv. vuzov. Himiya i him. tehnologiya. 2008. T. 51, vyp. 8. S. 22-24.
3. Mazunin S.A., Chechulin V.L. Vysalivanie kak fiziko-himicheskaya osnova maloothodnyh sposobov polucheniya fosfatov kaliya i ammoniya. Perm': PGNIU, 2012. 114 s.
4. Mazunin S.A., Panasenko V.A., Zubarev M.P., Mazunina E.L. Izuchenie rastvorimosti v sisteme Na+, NH4+/HCO3-, Cl- - H2O pri 15, 20, 25 i 30 °S // Zhurnal neorganicheskoy himii. 1999. T. 44, № 6. S. 999–1007.
5. Lucyk A.I., Rudakov B.E., Gundilovich G.G. Rastvorimost' uglevodorodov v sisteme voda - azotnaya kis-lota // Ukr. him. zhurnal. 1992. T.58, № 8. S. 646-650.
6. Mochalin V.N. Termodinamika rastvoreniya neelektrolitov v sistemah voda – uksusnaya kislota i voda – sernaya kislota: avtoref. dis. … kand. him. nauk: 02.00.04. Doneck, 2000. 20 s.
7. Mirgorod Yu.A. Fazovyy perehod zhidkost' - zhidkost' v vodnyh rastvorah n-uglevodorodov i amfifi-lov // Pis'ma v zhurnal tehnicheskoy fiziki. 2010. T. 36, № 19. C. 37-43.
8. Mirgorod Yu.A. Termodinamicheskiy analiz struktury vodnyh rastvorov uglevodorodov S12-S18 // Zhurnal strukt. himii. 2009. T. 50, № 3. S. 478-492.
9. Buchanan P., Aldiwan N., Soper A. K., Creek J.L., Koh C.A. Decreased structure on dissolving methane in water // Chem. Phys. Lett. 2005. Vol. 415, no. 1. R. 89-93. DOI:https://doi.org/10.1016/j.cplett.2005.08.064.
10. Tsonopoulos C. Thermodynamic analysis of the mutual solubilities of normal alkanes and water // Fluid Phase Equilibria. 1999. Vol. 156. P. 21-33. DOI:https://doi.org/10.1016/S0378-3812(99)00021-7.
11. Mirgorod Yu.A. Poliamorfnyy perehod zhidkost' - zhidkost' v vodnyh rastvorah n-uglevodorodov i PAV: ocenka ental'piya, izotermicheskoy szhimaemosti i vnutrennego davleniya // Izv. Yugo-Zapadnogo gos. un-ta. Ser. Tehnika i tehnologii. 2014. № 3. S. 91-98.
12. Siva Prasad V., Rajagopal E., Manohara Murthy N. Thermodynamic properties of ternary mixtures containing water, 2-ethoxyethanol, and t-butanol at 298.15 K // Russian Journal of Physical Chemistry. 2010. Vol. 84. R. 2211-2216. DOI:https://doi.org/10.1007/S10973-005-0651-4.
13. Dougan L., Bates S.P., Hargreaves R., Fox J.P. Methanol-water solutions: a bi-percolating liquid mixture // J. Chem. Phys. 2004. Vol. 121. R. 6456-6462. DOI:https://doi.org/10.1063/1.1789951.
14. Petersen C. Tielrooij K.-J., Bakker H. J. Strong temperature dependence of water reorientation in hydrophobic hydration shells // J. Chem. Phys. 2009. Vol. 130(21). 214511. DOI:https://doi.org/10.1063/1.3142861.
15. Alexander S. Lyons, Jr. and Steven W. Rick. Simulations of water and hydrophobic hydration using a neural network potential // Chemical Physics. 2021. No. 7. 11 r. DOI: orghttps://doi.org/10.48550/arXiv.2101.02754. URL: https://arxiv.org/pdf/2101.02754.pdf
16. Shiraga K., Suzuki T., Kondo N., Ogawa Y. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy // J. Chem. Phys. 2014. Vol. 141(23). 235103. DOI: org/10.1063/1.4903544.