OPENING OF FORBINEXOCYCLE BY WEAK O-NUCLEOPHILES. STUDY AND OPTIMISATION OF FREE CHLORINE E6 SYNTHESIS METHODS
Abstract and keywords
Abstract (English):
The article considers issues concerning the reaction of exocycle opening in phorbin molecules (on the example of methylpheophorbide a) under the O nucleophiles - water and alcohols action. According to the author, under certain conditions relatively weak nucleophiles as water and alcohols can cause the opening of the exocycle in the molecule of methylpheophorbide a with the formation of chlorine derivatives e6. The study of this reaction, in addition, reveals new synthetic methods to obtain chlorine e6 esters of different degrees of substitution, and eventually - free chlorine e6 in the form of triacids. Free chlorine is a valuable photosensitiser for photodynamic therapy (PDT), and a starting compound for the preparation of other photosensitizers. The article also discusses possible synthetic approaches to obtain free chlorine e6.

Keywords:
phorbines, O-nucleophiles; exocycle uncoupling, chlorine e6 derivatives, photosensitisers
Text
Text (PDF): Read Download
References

1. Mironov, A.F. (2004) Current state of chemistry of photosensitisers based on natural porphyrins, chlorines and bacteriochlorines, Uspexi khimii porfirinov, 4, pp. 271-289 (in Russian).

2. Agostinis, P., Berg, K., Cengel, K.A. et al. (2011) Photodynamic therapy of cancer: an update, CA Cancer J. Clin., 61(4), pp. 250-281. DOI:https://doi.org/10.3322/caac.20114.; ; EDN: https://elibrary.ru/PMYUVH

3. Cabuy, E. (2012) Photodynamic therapy in cancer treatment. RCT summary for professionals, Reliable cancer therapies. Energy-based therapies, 3(2), pp. 1-54.

4. Tsyb, A.F., Kaplan, M.A., Romanko, Y.S. & Popuchiev, V.V. (2009) Clinical aspects of photodynamic therapy. Kaluga: Izd-vo nauch. lit-ry (in Russian).; EDN: https://elibrary.ru/RTAEVX

5. Van Straten, D., Mashayekhi, V., De Bruijn, H.S., Oliveira, S. & Robinson, D.J. (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions, Cancers, 9(19), pp. 1-54. DOI:https://doi.org/10.3390/cancers9020019.; ; EDN: https://elibrary.ru/YXPKBV

6. Bonnett, R. (2000) Chemical aspects of photodynamic therapy. Amsterdam: Gordon and Breach Science Publishers.

7. Kustov, A.V., Berezin, D.B., Strelnikov, A.I. & Lapochkina, N.P. (2020) Antitumour and antimicrobial photodynamic therapy: mechanisms, targets, clinical and laboratory studies. Moscow: Largo (in Russian).; EDN: https://elibrary.ru/TFKMHZ

8. Koifman, O.I. et.al. (2022) Synthetic strategy of tetrapyrrolic photosensitizers for their practical application in photodynamic therapy, Macroheterocycles, 15(4), pp. 207-304. DOI:https://doi.org/10.6060/mhs224870k.; DOI: https://doi.org/10.6060/mhc224870k; EDN: https://elibrary.ru/IFKTOS

9. Berezin, D.B., Karimov, D.R. & Kustov, A.V. (2018) Corroles and their derivatives: synthesis, properties, prospects of practical application. M.: LENAND (in Russian).; EDN: https://elibrary.ru/YQEIHB

10. Karimov, D.R., Berezin, D.B., Tomilova, I.K. (2020) Corroles as aromatic analogs of corrinoids and vitamin B12: synthesis, structural fea-tures and macrocycle properties, perspectives of material chemistry on corrole basis, From Chemistry Towards Technology Step-by-Step, 1(1), pp. 9-55. DOI:https://doi.org/10.52957/27821900_202020_01_9 [online]. Available at: http://chemintech.ru/index.php/tor/2020tom1n1 (accessed 10.09.2023).; DOI: https://doi.org/10.52957/27821900_2020_01_9; EDN: https://elibrary.ru/QOTTLB

11. Pandey, S.K., Sajjad, M., Chen, Y., Zheng, X., Yao, R., Missert, J.R., Batt, C., Nabi, H.A., Oseroff, A.R. & Pandey, R.K. (2009) Comparative Positron-Emission Tomography (PET) Imaging and Phototherapeutic Potential of 124I- Labeled Methyl-3-(1′-iodobenzyloxyethyl)pyropheophorbide-a vs the Corresponding Glucose and Galactose Conjugates, J. Med. Chem., 52, pp. 445–455. DOI:https://doi.org/10.1021/jm8012213.

12. Zhang, M., Zhang, Z., Blessington, D., Li, H., Busch, T.M., Madrak, V., Miles, J., Chance, B., Glickson, J.D., Zheng, G. (2003) Pyropheophorbide 2-Deoxyglucosamide: A New Photosensitizer Targeting Glucose Transporters, Bioconjugate Chem., 14, pp. 709–714. DOI:https://doi.org/10.1021/bc034038n.

13. Varchi, G., Rapozzi, V., Ragno, D., Castoria, G., Di Donato, M., Pietra, E.D., Benfenati, V., Ferroni, C., Guerrini, A., Cesselli, D. & Saracino, E. (2015) Androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro, Bioconjugate Chem., 26(8), pp. 1662–1671. DOI:https://doi.org/10.1021/acs.bioconjchem.5b00261.

14. Tegos, G.P., Anbe, M., Yang, Ch., Demidova, T.N., Satti, M., Mroz, P., Janjua, S., Gad, F. & Hamblin, M.R. (2006) Protease-Stable Polycationic Photosensitizer Conjugates between Polyethyleneimine and Chlorin(e6) for Broad-Spectrum Antimicrobial Photoinactivation, Antimicrobial Agents and Chemotherapy, 50(4), pp. 1402-1410. DOI:https://doi.org/10.1128/aac.50.4.1402-1410.2006.

15. Hamblin, M.R. (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes, Current opinion in Microbiology, 33, pp. 67-73. DOI:https://doi.org/10.1016/j.mib.2016.06.008.; ; EDN: https://elibrary.ru/XZERZZ

16. Kustov, A.V., Morshnev, Ph. K., Kukushkina, N.V., Smirnova, N.L., Berezin, D.B., Karimov, D.R., Shukhto, O.V., Kustova, T.V., Belykh, D.V., Mal’shakova, M.V., Zorin, V.P. & Zorina, T.E. (2022) Solvation, Cancer Cell Photoinactivation and the Interaction of Chlorin Photosensitizers with a Potential Passive Carrier Non-Ionic Surfactant Tween 80, Int. J. Mol. Sci., 23, pp. 5294-5305 [online]. Available at: https://doi.org/10.3390/ijms23105294 (accessed 09.10.2023).; ; EDN: https://elibrary.ru/PLVCPM

17. Hynninen, P.H. (1973) Chlorophylls. IV. Preparation and purification of some derivatives of chlorophylls a and b, Acta Chem. Scand., 27, pp. 1771–1780.

18. Belykh, D.V. (2017) Formation of C-O, C-S, C-N and C-C bonds at the periphery of phytochlorines macrocycle during their chemical modification: basic methods and synthetic applications, Russian Chemical Journal, LXI(3), pp. 69-109 (in Russian).; EDN: https://elibrary.ru/XOQSJN

19. Belykh, D.V., Kopylov, E.A., Gruzdev, I.V. & Kuchin, A.V. (2010) Opening of the exocycle of methylpheophorbide under the action of amines as a one-step method of introduction of additional fragments on the periphery of the chlorine macrocycle, Zhurn. org. khimii, 46(4), pp. 584-592 (in Russian).

20. Nikolaeva, I.A., Misharin, A.Yu., Ponomarev, G.V., Timofeev, V.P. & Tkachev, Ya.V. (2010) Chlorin e6 cholesterol conjugate and its copper complex. Simple synthesis and entrapping in phospholipid vesicles, Bioorg. Med. Chem. Lett., 20, pp. 2872-2875. DOI:https://doi.org/10.1016/j.bmcl.2010.03.041.; ; EDN: https://elibrary.ru/MXIXQR

21. Gushchina, O.I., Larkina, E.A., Nikolskaya, T.A. & Mironov, A.F. (2015) Synthesis of amide derivatives of chlorin e6 and investigation of their biological activity, J. Photochem. Photobiol. B: Biology, 153, pp. 76–81. DOI:https://doi.org/10.1016/j.jphotobiol.2015.09.007.; ; EDN: https://elibrary.ru/UZZIFL

22. Hargus, J.A., Fronczek, F.R., Vicente, M.G.H. & Smith, K.M. (2007) Mono-(L)-aspartylchlorin-e6, Photochemistry and Photobiology, 83, pp. 1006-1015. DOI:https://doi.org/10.1111/j.1751-1097.2007.00092.x.

23. Jinadasa, R.G.W., Hu, X., Vicente, M.G.H. & Smith, K.M. (2011) Syntheses and cellular investigations of 173-, 152-, and 131-amino acid derivatives of chlorin e6, J. Med. Chem., 54, pp. 7464-7476. DOI:https://doi.org/10.1021/jm2005139.; ; EDN: https://elibrary.ru/PHEFNZ

24. Askarov, K.A., Berezin, B.D., Evstigneeva, R.P. et al. (1985) Porphyrins: structure, properties, synthesis. Moscow: Nauka (in Russian).

25. Taima, H., Okubo, A., Yoshioka, N. & Inoue, H. (2005) Synthesis of cationic water-soluble esters of chlorin e6, Tetrahedron Lett., 46, pp. 4161–4164. DOI:https://doi.org/10.1016/j.tetlet.2005.04.069.; ; EDN: https://elibrary.ru/LPMIVH

26. Koifman, O.I. & Ponomarev, G.V. (2013) Method for obtaining methylpheophorbide (A). 2490273 RF.

27. Makarov, V.V. (2023) Synthesis and physicochemical characteristics of tetrapyrrole macrocycles with polar groups for antimicrobial photodynamic therapy. PhD. Ivanovo (in Russian).; EDN: https://elibrary.ru/RPEUED

28. Tulaeva, L.A., Belykh, D.V., Yakovleva, N.M., Sel'kova, I.A., Rocheva, A.V. & Kuchin, A.V. (2006) Synthesis and study of chlorophyll derivatives containing a free carboxyl group, Khimiya i khimicheskaya texnologiya, 49(4), pp. 82-87 (in Russian).

29. Berezin, M.B. (1993) Solvation of chlorophyll and related compounds. PhD. Ivanovo (in Russian).; EDN: https://elibrary.ru/ZKKEVJ

Login or Create
* Forgot password?