Ivanovo, Ivanovo, Russian Federation
Ivanovo, Ivanovo, Russian Federation
Wuhan, China
Ivanovo, Ivanovo, Russian Federation
UDC 547.8
UDC 535.34
The interdisciplinary field of dopamine-mediated coloration, spanning materials science, biomimetics, and sustainable chemistry, has experienced rapid growth, making comprehensive literature synthesis increasingly challenging. This paper presents a novel methodology for transforming the reference management software Citavi into a structured knowledge system, enabling both manual and AI-augmented trend analysis. We curated and annotated over 1,000 publications, with particular focus on dopamine and polydopamine in textile functionalization and coloration. Structuring via custom taxonomies (e.g., substrate type, deposition method, durability metrics) enabled AI-driven synthesis using Qwen3-Max. Key insights include: (1) PDA’s role as a universal textile modifier enhancing dye fastness, enabling structural color, and imparting antimicrobial/UV functions; (2) enzymatic (laccase-mediated) DA polymerization as an emerging green alternative; (3) under-explored potential in wool and scalability studies. AI insights were reintegrated into Citavi as “AI Insight Notes,” creating a dynamic human-AI collaborative environment. This approach offers a reproducible framework for domain mapping in fast-evolving fields.
dopamine, polydopamine, coloration, Citavi, knowledge system, trend analysis, AI in research, Qwen3-Max, materials science, bibliometric synthesis
1. Lee H., Dellatore S. M., Miller W. M., Messersmith P. B. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Science, 2007, 318, 26–430. DOI:https://doi.org/10.1126/science.1147241.
2. Wei X., Wang Y., Chen J., Liu Z., Xu F., He X., Li H., Zhou Y. Fabrication of di-selective adsorption platform based on deep eutectic solvent stabilized magnetic polydopamine: Achieving di-selectivity conversion through adding CaCl₂. Chem. Eng. J., 2021, 421, 127815. DOI:https://doi.org/10.1016/j.cej.2020.127815. EDN: https://elibrary.ru/PQLRFQ
3. Mahmoodi N. M., Najafi F. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability. Mater. Res. Bull., 2012, 47, 1–8. DOI:https://doi.org/10.1016/j.materresbull.2012.03.026.
4. Vokurova D. A., Nikiforova T. Ye. Modelirovaniye protsessa adsorbtsii ionov Cu(II) na tsellyulozosoderzhashchikh sorbentakh. XLVII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya. Petrozavodsk, 2025, P.79–83.
5. Jiang W., Yang X., Deng J., Zhang L., Liu Y. Polydopamine-based materials applied in Li-ion batteries: a review. J. Mater. Sci., 2021, 56, 19359–19382. DOI:https://doi.org/10.1007/s10853-021-06536-3. EDN: https://elibrary.ru/CGNUYI
6. Ahmad N., Zhang X., Yang S., Zhang D., Wang J., Zafar S. u., Li Y., Zhang Y., Hussain S., Cheng Z., Kumaresan A., Zhou H. Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. J. Mater. Chem. C, 2019, 7, 10795–10801. DOI:https://doi.org/10.1039/C9TC02781E.
7. Aguilar-Ferrer D., Szewczyk J., Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal. Today, 2022, 397–399, 316–349. DOI:https://doi.org/10.1016/j.cattod.2021.08.016. EDN: https://elibrary.ru/ASJYCP
8. Cheng X. Q., Wang Z. X., Guo J., Ma J., Shao L. Designing Multifunctional Coatings for Cost-Effectively Sustainable Water Remediation. ACS Sustainable Chem. Eng., 2018, 6, 1881–1890. DOI:https://doi.org/10.1021/acssuschemeng.7b03296.
9. Ran J., Bi S., Jiang H., Zhang Y., Li R. Core–shell BiVO₄@PDA composite photocatalysts on cotton fabrics for highly efficient photodegradation under visible light. Cellulose, 2019, 26, 6259–6273. DOI:https://doi.org/10.1007/s10570-019-02535-5. EDN: https://elibrary.ru/OFXTWX
10. Liu Y., Ai K., Lu L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev., 2014, 114, 5057–5115. DOI:https://doi.org/10.1021/cr400407a. EDN: https://elibrary.ru/SRSYGB
11. Barclay T. G., Hegab H. M., Clarke S. R., Ginic-Markovic M. Versatile Surface Modification Using Polydopamine and Related Polycatecholamines: Chemistry, Structure, and Applications. Adv. Mater. Interfaces, 2017, 4, 1601192. DOI:https://doi.org/10.1002/admi.201601192. EDN: https://elibrary.ru/YHCLTI
12. Kohri M., Nannichi Y., Taniguchi T., Miyazaki T., Kojima Y., Fujii S., Ishihara M., Matsuoka H., Kunitake T. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C, 2015, 3, 720–724. DOI:https://doi.org/10.1039/C4TC02383H.
13. Kohri M., Yanagimoto K., Kawamura A., Fujii S., Matsuoka H., Kunitake T. Polydopamine-Based 3D Colloidal Photonic Materials: Structural Color Balls and Fibers from Melanin-Like Particles with Polydopamine Shell Layers. ACS Appl. Mater. Interfaces, 2018, 10, 7640–7648. DOI:https://doi.org/10.1021/acsami.7b03453.
14. Kohri M. Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci. Technol. Adv. Mater., 2020, 21, 833–848. DOI:https://doi.org/10.1080/14686996.2020.1852057. EDN: https://elibrary.ru/EJPKPV
15. Zhu X., Yan B., Yan X., Zhang Y., Wang H. Fabrication of non-iridescent structural color on silk surface by rapid polymerization of dopamine. Prog. Org. Coat., 2020, 149, 105904. DOI:https://doi.org/10.1016/j.porgcoat.2020.105904. EDN: https://elibrary.ru/KCTBPE
16. He L., Lai So V. L., Xin J. H. Dopamine polymerization-induced surface colouration of various materials. RSC Advances, 2014, 4, 20317–20322. DOI: https://doi.org/10.1039/C4RA00098F.
17. Jia W., Wang Q., Fan X., Wang X., Li R. Laccase-mediated in situ oxidation of dopa for bio-inspired coloration of silk fabric. RSC Advances, 2017, 7, 12977–12983. DOI:https://doi.org/10.1039/C6RA25533G.
18. Nong Y., Zhou Z., Yuan J., Li X., Zhang Y., Liu Y., Wang X., Li R. Bio-Inspired Coloring and Functionalization of Silk Fabric via Laccase-Catalyzed Graft Polymerization of Arylamines. Fibers Polym., 2020, 21, 1927–1937. DOI:https://doi.org/10.1007/s12221-020-1044-9. EDN: https://elibrary.ru/BBORSO
19. Citavi — From chaos to clarity. https://lumivero.com/products/citavi/. Accessed 30 Sep 2025.
20. Tongyi Lab. Qwen3-Max (Version 3). Large language model. https://tongyi.aliyun.com/qwen/. Accessed 30 Sep 2025.
21. Kesornsit S., Jitjankarn P., Sajomsang W., Chairat M. Polydopamine‐coated silk yarn for improving the light fastness of natural dyes. Color. Technol., 2019, 135, 143–151. DOI:https://doi.org/10.1111/cote.12390. EDN: https://elibrary.ru/AYCJMN
22. Ran J., He M., Li W., Zhang Y., Liu Y., Wang X., Li R. Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers, 2018, 10, 495. DOI:https://doi.org/10.3390/polym10050495. EDN: https://elibrary.ru/YGQPVZ
23. Pham T. L., Nguyen T. N., Bui V. C., Nguyen A. S., Dao T. H. Synthesis and study of Ag-TiO₂ nanoparticles for application in self-cleaning fabrics. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.], 2024, 67(1), 128–135. DOI:https://doi.org/10.6060/ivkkt.20246701.6962. EDN: https://elibrary.ru/STOTTD
24. Ovchinnikov N. L., Vinogradov N. M., Gordina N. E., Kuznetsov D. V., Kuznetsova T. A., Kolesnikov A. V. Application of activating influences in obtaining TiO₂-pillared montmorillonite with improved photocatalytic properties. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.], 2024, 66(5), 59–71. DOI:https://doi.org/10.6060/ivkkt.20236605.6798. EDN: https://elibrary.ru/LHKHZM
25. Zhu X., Wei T., Mia M. S., Li Y., Zhang Y., Wang H. Preparation of PS@PDA amorphous photonic structural colored fabric with vivid color and robust mechanical properties based on rapid polymerization of dopamine. Colloids Surf., A, 2021, 622, 126651. DOI:https://doi.org/10.1016/j.colsurfa.2021.126651. EDN: https://elibrary.ru/WERAZG
26. Tania I., Ali M., Azam M. S. In-situ Deposition of Ag Nanoparticles on Dopamine Pre-Modified Cotton Fabric and Analysis of Its Functional Mechanical and Dyeing Properties. J. Inorg. Organomet. Polym. Mater., 2021, 31, 1–12. DOI:https://doi.org/10.21203/rs.3.rs-324700/v1.
27. Wang Z., Wang Q., Dong X., Li D., Bai L., Wang X.-L., Wang Y.-Z., Song F. Photonic Cellulose Films with Vivid Structural Colors: Fabrication and Selectively Chemical Response. Biomacromolecules, 2022, 23, 1662 1671. DOI: https://doi.org/10.1021/acs.biomac.1c01567. EDN: https://elibrary.ru/RVHZSU



