Yaroslavl, Yaroslavl, Russian Federation
student
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
The paper discusses the synthesis of 3,6-diaryl-1,2,4,5-tetrazines by the reaction of aromatic nitriles with hydrazine hydrate in the presence of elemental sulphur. We study the structure of synthesised dihydro-1,2,4,5-tetrazines by 1H NMR spectroscopy, quantum chemical modelling, and the density functional method with a basis set of 6-31G (d,p) basis set. As a result, 1,4-dihydro- are similar to 1,2-dihydrotetrazines in terms of their total energy values. Additionally, the equilibrium in a mixture is in approximately equal amounts for most their substrates. The corresponding 3,6-diaryl-1,2,4,5-tetrazines were synthesised by oxidising the obtained dihydro-1,2,4,5-tetrazines with sodium nitrite in glacial acetic acid. Their structure was confirmed by 1H NMR spectroscopy. The authors forecast effective binding to receptors and enzymes for all synthesised target compounds.
1,2,4,5-tetrazines, aromatic nitriles, hydrazine hydrate, dihydrotetrazines, oxidation reactions
1. Begunov R.S., Savina L.I., Astafieva D.A. Intramolecular amination of ortho-nitro-tert-anilines as a method for the synthesis of condensed benzimidazole derivatives with a nodal nitrogen atom. From Chemistry Towards Technology Step-by-Step, 2025, 6(1), 88-98. Available at: https://chemintech.ru/ru/nauka/issue/5879/view (accessed 08.09.2025) (in Russian).
2. Calahorro A.J., Peñas-Sanjuan A., Melguizo M., Fairen-Jimenez D., Zaragoza G., Fernández B., Salinas Castillo A., Rodríguez-Diéguez A. First Examples of Metal–Organic Frameworks with the Novel 3,3′ (1,2,4,5-Tetrazine-3,6-diyl)dibenzoic Spacer. Luminescence and Adsorption Properties. Inorg. Chem., 2013, 52(2), 546-548. DOI:https://doi.org/10.1021/ic302318j.
3. Ros E., Bellido M., Verdaguer X., Ribas de Pouplana L., Riera A. Synthesis and Application of 3-Bromo-1,2,4,5-Tetrazine for Protein Labeling to Trigger Click-to-Release Biorthogonal Reactions. Bioconjugate Chem., 2020, 31(3), 933-938. DOI:https://doi.org/10.1021/acs.bioconjchem.0c00052.
4. Soenen D.R., Zimpleman J.M., Boger D.L. Synthesis and Inverse Electron Demand Diels−Alder Reactions of 3,6-Bis(3,4-dimethoxybenzoyl)-1,2,4,5-tetrazine. J. Org. Chem., 2003, 68(9), 3593-3598. DOI:https://doi.org/10.1021/jo020713v.
5. Kawai K., Ikeda K., Sato A., Kabasawa A., Kojima M., Kokado K., Kakugo A., Sada K., Yoshino T., Matsunaga S. 1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. J. Am. Chem. Soc., 2022, 144(3), 1370-1379. DOI:https://doi.org/10.1021/jacs.1c11665.
6. Schnierle M., Leimkühler M., Ringenberg M.R. [(η6-p-Cymene)[3-(pyrid-2-yl)-1,2,4,5-tetrazine]chlororuthenium(II)], Redox Noninnocence and Dienophile Addition to Coordinated Tetrazine. Inorg. Chem., 2021, 60(9), 6367-6374. DOI:https://doi.org/10.1021/acs.inorgchem.1c00094.
7. Wei T., Zhu W., Zhang X., Li Y.-F., Xiao H. Molecular Design of 1,2,4,5-Tetrazine-Based High-Energy Density Materials. J. Phys. Chem. A, 2009, 113(33), 9404-9412. DOI:https://doi.org/10.1021/jp902295v.
8. Hu L., He C., Zhao G., Imler G.H., Parrish D.A., Shreeve J.M. Selecting Suitable Substituents for Energetic Materials Based on a Fused Triazolo-[1,2,4,5]tetrazine Ring. ACS Appl. Energy Mat., 2020, 3(6), 5510-5516. DOI:https://doi.org/10.1021/acsaem.0c00487.
9. Yu Q., Yang H., Imler G.H., Parrish D.A., Cheng G., Shreeve J.M. Derivatives of 3,6-Bis(3-aminofurazan-4-ylamino)-1,2,4,5-tetrazine: Excellent Energetic Properties with Lower Sensitivities. ACS Appl. Mater. Interfaces, 2020, 12(28) 31522-31531. DOI:https://doi.org/10.1021/acsami.0c08526.
10. Liu Y., Zhao G., Yu Q., Tang Y., Imler G.H., Parrish D.A., Shreeve J.M. Intermolecular Weak Hydrogen Bonding (Het-H-N/O): an Effective Strategy for the Synthesis of Monosubstituted 1,2,4,5-Tetrazine-Based Energetic Materials with Excellent Sensitivity. J. Org. Chem., 2019, 84(24), 16019-16026. DOI:https://doi.org/10.1021/acs.joc.9b02484.
11. Babaryk A.A., Haouas M., Khaynakova O., Elkaïm E., Horcajada P. Bis-3,5-Diamino-1,2,4-Triazolyl-1,2,4,5-Tetrazine: From Insensitive High Energy Density Materials to Small Molecule Organic Semiconductors. Cryst. Growth Des., 2020, 20(10), 6510-6518. DOI:https://doi.org/10.1021/acs.cgd.0c00698.
12. Zhu Y.-Q., Cheng J., Zou X.-M., Hu F.-Z., Xiao Y.-H., Yang H.-Z. Design, Synthesis and Quantitative Structure-Activity Relationship Study of Herbicidal Analogues of Pyrazolotetrazinones. Chin. J. Org. Chem., 2008, 28(6), 1044-1049.
13. Nhu D., Duffy S., Avery V.M., Hughes A., Baell J.B. Antimalarial 3-arylamino-6-benzylamino-1,2,4,5-tetrazines. Bioorg. Med. Chem. Lett., 2010, 20(15), 4496-4498. DOI:https://doi.org/10.1016/j.bmcl.2010.06.036.
14. Sharma P., Kumar A., Sahu V., Singh J. Diels Alder reaction strategy to synthesize 1,2,4,5-tetrazines and exploration of their anti-inflammatory potential. Arkivoc, 2008, (xii), 218-225. DOI:https://doi.org/10.3998/ark.5550190.0009.c23.
15. Tabassum S., Parveen M., Ali A., Alam M., Ahmad A., Khan A.U., Khan R.A. Synthesis of Aryl-1,2,4,5-tetrazinane-3-thiones, in vitro DNA binding studies, nuclease activity and its antimicrobial activity. J. Mol. Struct., 2012, 1020, 33-40. DOI:https://doi.org/10.1016/j.molstruc.2012.03.049.
16. Rao G.W., Guo Y.M., Hu W.X. Synthesis, Structure Analysis, and Antitumor Evaluation of 3,6-Dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide Derivatives. ChemMedChem, 2012, 7, 973-976. DOI:https://doi.org/10.1002/cmdc.201200109
17. Qiu L.N., Zhou Y.L., Wang Z.N., Huang Q., Hu W.X. ZGDHu-1 promotes apoptosis of chronic lymphocytic leukemia cells. Int. J. Oncol., 2012, 41, 533-540. DOI:https://doi.org/10.3892/ijo.2012.1467.
18. Hu W.-X., Rao G.-W., Sun Y.-Q. Synthesis and antitumor activity of s-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 1177–1181. DOI:https://doi.org/10.1016/j.bmcl.2003.12.056.
19. Cui X., Ding C., Zhang C., Jiao Z., Zhang L., Zhao X., Zhao L. Computational Mechanistic Study of Brønsted Acid-Catalyzed Unsymmetrical 1,2,4,5-Tetrazines Synthesis. J. Phys. Chem. A, 2021, 125, 4715−4726. DOI:https://doi.org/10.1021/acs.jpca.1c00274.
20. Granovsky A.A. Firefly version 8.2, URL: http://classic.chem.msu.su/gran/firefly/index.html (accessed 08.09.2025).
21. Wang D., Chen W., Zheng Y., Dai C., Wang L., Wang B. A general and efficient entry to asymmetric tetrazines for click chemistry applications. Heterocycl. Commun., 2013, 19(3), 171–177. DOI:https://doi.org/10.1515/hc-2013-0072
22. URL: http://www.way2drug.com/passonline (accessed 08.09.2025).



