Yaroslavl, Yaroslavl, Russian Federation
student
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
V stat'e rassmotren sintez 3,6-diarildigidro-1,2,4,5-tetrazinov vzaimodeystviem aromaticheskih nitrilov s gidrazingidratom v prisutstvii elementnoy sery. V rezul'tate issledovaniya stroeniya sintezirovannyh digidro-1,2,4,5-tetrazinov s pomosch'yu YaMR 1N spektroskopii i kvantovo-himicheskogo modelirovaniya metodom funkcionala plotnosti s bazisnym naborom 6-31G (d,p) ustanovleno, chto 1,4-digidro- i 1,2-digidrotetraziny blizki po znacheniyam obschey energii i nahodyatsya v smesi v ravnovesii dlya bol'shinstva substratov v priblizitel'no ravnyh kolichestvah. Okisleniem poluchennyh digidro-1,2,4,5-tetrazinov nitritom natriya v ledyanoy uksusnoy kislote sintezirovany sootvetstvuyuschie 3,6 diaril-1,2,4,5-tetraziny, struktura kotoryh podtverzhdena metodom YaMR 1N spektroskopii. Dlya vseh sintezirovannyh celevyh soedineniy prognoziruetsya effektivnoe svyazyvanie s receptorami i fermentami.
tetraziny, aromaticheskie nitrily, gidrazingidrat, digidrotetraziny, reakcii okisleniya
1. Begunov R.S., Savina L.I., Astaf'eva D.A. Vnutrimolekulyarnoe aminirovanie orto-nitro-tret-anilinov kak odin iz putey sinteza kondensirovannyh proizvodnyh benzimidazola s uzlovym atomom azota. Ot himii k tehnologii shag za shagom, 2025, 6(1), 22-33. https://chemintech.ru/ru/nauka/issue/5879/view (data obrascheniya 08.09.2025). DOI: https://doi.org/10.52957/2782-1900-2025-6-1-22-33; EDN: https://elibrary.ru/YUCJVL
2. Calahorro A.J., Peñas-Sanjuan A., Melguizo M., Fairen-Jimenez D., Zaragoza G., Fernández B., Salinas-Castillo A., Rodríguez-Diéguez A. First Examples of Metal–Organic Frameworks with the Novel 3,3′-(1,2,4,5-Tetrazine-3,6-diyl)dibenzoic Spacer. Luminescence and Adsorption Properties. Inorg. Chem., 2013, 52(2), 546-548. DOI:https://doi.org/10.1021/ic302318j.
3. Ros E., Bellido M., Verdaguer X., Ribas de Pouplana L., Riera A. Synthesis and Application of 3-Bromo-1,2,4,5-Tetrazine for Protein Labeling to Trigger Click-to-Release Biorthogonal Reactions. Bioconjugate Chem., 2020, 31(3), 933-938. DOI:https://doi.org/10.1021/acs.bioconjchem.0c00052. EDN: https://elibrary.ru/TQGCNQ
4. Soenen D.R., Zimpleman J.M., Boger D.L. Synthesis and Inverse Electron Demand Diels−Alder Reactions of 3,6-Bis(3,4-dimethoxybenzoyl)-1,2,4,5-tetrazine. J. Org. Chem., 2003, 68(9), 3593-3598. DOI:https://doi.org/10.1021/jo020713v.
5. Kawai K., Ikeda K., Sato A., Kabasawa A., Kojima M., Kokado K., Kakugo A., Sada K., Yoshino T., Matsunaga S. 1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. J. Am. Chem. Soc., 2022, 144(3), 1370-1379. DOI:https://doi.org/10.1021/jacs.1c11665. EDN: https://elibrary.ru/FTADLM
6. Schnierle M., Leimkühler M., Ringenberg M.R. [(η6-p-Cymene)[3-(pyrid-2-yl)-1,2,4,5-tetrazine]chlororuthenium(II)], Redox Noninnocence and Dienophile Addition to Coordinated Tetrazine. Inorg. Chem., 2021, 60(9), 6367-6374. DOI:https://doi.org/10.1021/acs.inorgchem.1c00094. EDN: https://elibrary.ru/UFNIUX
7. Wei T., Zhu W., Zhang X., Li Y.-F., Xiao H. Molecular Design of 1,2,4,5-Tetrazine-Based High-Energy Density Materials. J. Phys. Chem. A, 2009, 113(33), 9404-9412. DOI:https://doi.org/10.1021/jp902295v. EDN: https://elibrary.ru/MZGMYF
8. Hu L., He C., Zhao G., Imler G.H., Parrish D.A., Shreeve J.M. Selecting Suitable Substituents for Energetic Materials Based on a Fused Triazolo-[1,2,4,5]tetrazine Ring. ACS Appl. Energy Mat., 2020, 3(6), 5510-5516. DOI:https://doi.org/10.1021/acsaem.0c00487. EDN: https://elibrary.ru/CZGVGF
9. Yu Q., Yang H., Imler G.H., Parrish D.A., Cheng G., Shreeve J.M. Derivatives of 3,6-Bis(3-aminofurazan-4-ylamino)-1,2,4,5-tetrazine: Excellent Energetic Properties with Lower Sensitivities. ACS Appl. Mater. Interfaces, 2020, 12(28) 31522-31531. DOI:https://doi.org/10.1021/acsami.0c08526. EDN: https://elibrary.ru/FDDHDQ
10. Liu Y., Zhao G., Yu Q., Tang Y., Imler G.H., Parrish D.A., Shreeve J.M. Intermolecular Weak Hydrogen Bonding (Het-H-N/O): an Effective Strategy for the Synthesis of Monosubstituted 1,2,4,5-Tetrazine-Based Energetic Materials with Excellent Sensitivity. J. Org. Chem., 2019, 84(24), 16019-16026. DOI:https://doi.org/10.1021/acs.joc.9b02484. EDN: https://elibrary.ru/DEEAPM
11. Babaryk A.A., Haouas M., Khaynakova O., Elkaïm E., Horcajada P. Bis-3,5-Diamino-1,2,4-Triazolyl-1,2,4,5-Tetrazine: From Insensitive High Energy Density Materials to Small Molecule Organic Semiconductors. Cryst. Growth Des., 2020, 20(10), 6510-6518. DOI:https://doi.org/10.1021/acs.cgd.0c00698. EDN: https://elibrary.ru/HWYZRW
12. Zhu Y.-Q., Cheng J., Zou X.-M., Hu F.-Z., Xiao Y.-H., Yang H.-Z. Design, Synthesis and Quantitative Structure-Activity Relationship Study of Herbicidal Analogues of Pyrazolotetrazinones. Chin. J. Org. Chem., 2008, 28(6), 1044-1049.
13. Nhu D., Duffy S., Avery V.M., Hughes A., Baell J.B. Antimalarial 3-arylamino-6-benzylamino-1,2,4,5-tetrazines. Bioorg. Med. Chem. Lett., 2010, 20(15), 4496-4498. DOI:https://doi.org/10.1016/j.bmcl.2010.06.036. EDN: https://elibrary.ru/NAKQKZ
14. Sharma P., Kumar A., Sahu V., Singh J. Diels Alder reaction strategy to synthesize 1,2,4,5-tetrazines and exploration of their anti-inflammatory potential. Arkivoc, 2008, (xii), 218-225. DOI:https://doi.org/10.3998/ark.5550190.0009.c23. EDN: https://elibrary.ru/MINYMP
15. Tabassum S., Parveen M., Ali A., Alam M., Ahmad A., Khan A.U., Khan R.A. Synthesis of Aryl-1,2,4,5-tetrazinane-3-thiones, in vitro DNA binding studies, nuclease activity and its antimicrobial activity. J. Mol. Struct., 2012, 1020, 33-40. DOI:https://doi.org/10.1016/j.molstruc.2012.03.049.
16. Rao G.W., Guo Y.M., Hu W.X. Synthesis, Structure Analysis, and Antitumor Evaluation of 3,6-Dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide Derivatives. ChemMedChem, 2012, 7, 973-976. DOI:https://doi.org/10.1002/cmdc.201200109
17. Qiu L.N., Zhou Y.L., Wang Z.N., Huang Q., Hu W.X. ZGDHu-1 promotes apoptosis of chronic lymphocytic leukemia cells. Int. J. Oncol., 2012, 41, 533-540. DOI:https://doi.org/10.3892/ijo.2012.1467.
18. Hu W.-X., Rao G.-W., Sun Y.-Q. Synthesis and antitumor activity of s-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 1177–1181. DOI:https://doi.org/10.1016/j.bmcl.2003.12.056. EDN: https://elibrary.ru/JLMWPL
19. Cui X., Ding C., Zhang C., Jiao Z., Zhang L., Zhao X., Zhao L. Computational Mechanistic Study of Brønsted Acid-Catalyzed Unsymmetrical 1,2,4,5-Tetrazines Synthesis. J. Phys. Chem. A, 2021, 125, 4715−4726. DOI:https://doi.org/10.1021/acs.jpca.1c00274. EDN: https://elibrary.ru/CMAOYN
20. Granovsky A.A. Firefly version 8.2, URL: http://classic.chem.msu.su/gran/firefly/index.html (data obrascheniya 08.09.2025).
21. Wang D., Chen W., Zheng Y., Dai C., Wang L., Wang B. A general and efficient entry to asymmetric tetrazines for click chemistry applications. Heterocycl. Commun., 2013, 19(3), 171–177. DOI:https://doi.org/10.1515/hc-2013-0072
22. URL: http://www.way2drug.com/passonline (data obrascheniya 08.09.2025).



