student
Voronezh, Voronezh, Russian Federation
employee from 01.01.2015 to 01.01.2025
Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
student
Voronezh, Voronezh, Russian Federation
student
Voronezh, Voronezh, Russian Federation
UDC 547.564.31
A silver nanocomposite on a matrix of the natural polysaccharide guar gum cross-linked with borate bridges was obtained. Metallic nanoparticles were synthesised by the reduction of silver ions under the action of the polysaccharide. The formation of the nanocomposites was confirmed by UV and IR spectroscopy and X-ray diffraction analysis. The resulting polymeric nanocomposite shows catalytic activity in the reduction of 4-nitrophenol with sodium borohydride under mild conditions.
Guar gum, silver nanoparticles, catalysis, reduction, 4-nitrophenol
1. Popov Yu.V., Mokhov V.M., Nebykov D.N., Budko I.I. Nanodispersed particles in catalysis: preparation and using in hydrogenation and reduction reactions (a review). Izvestiya VolgGTU: mezhvuz. sb. nauch. st., 2014, 7(134), 5-44. Available at: https://www.vstu.ru/uploadiblok/files/izvestiya/archive/11/2014-07.pdf (accessed 17.07.2025). (in Russian).
2. Zhang K., Suh J.M., Choi J.-W., Jang H.W. Shokouhimehr M., Varma R.S. Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega, 2019, 4(1), 483-495. DOI:https://doi.org/10.1021/acsomega.8b03051.
3. Begum R., Rehan R., Farooqi Z.H., Butt Z., Ashraf S. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future. J. Nanopart. Res., 2016, 18(8), 231. DOI:https://doi.org/10.1007/s11051-016-3536-5.
4. Dong X.-Y., Gao Z.-W., Yang K.-F., Zhang W.-Q., Xu L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5, 2554-2574. DOI:https://doi.org/10.1039/C5CY00285K.
5. Pradhan N., Pal A., Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf., A: Physicochem. Eng. Aspects, 2002, 196(2-3), 247-257. DOI:https://doi.org/10.1016/S0927-7757(01)01040-8.
6. Zhang W., Tan F., Wang W., Qiu X., Qiao X., Chen J. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater., 2012, 217–218, 36-42. DOI:https://doi.org/10.1016/j.jhazmat.2012.01.056.
7. Sharma M., Sarma P.J., Goswami M.J., Bania K.K. Metallogel templated synthesis and stabilization of silver-particles and its application in catalytic reduction of nitro-arene. J. Colloid Interface Sci., 2017, 490, 529-541. DOI:https://doi.org/10.1016/j.jcis.2016.11.065.
8. Shanmugaraj K., Campos C.H., Singh D.P., Gracia-Pinilla M.A., Díaz de Leon V., Aepuru R., Mangalaraja R.V. Edge-site selective decoration of silver nanoparticles on TiO2 nanosheets for the rapid catalytic reduction of nitroarenes. J. Environm. Chem. Eng., 2024, 12(3), 112588. DOI:https://doi.org/10.1016/j.jece.2024.112588.
9. Chernikh M.V., Mikheeva N.N., Zaikovskii V.I., Mamontova G.V. Influence of the Ag content on the activity of Ag/CeO2 catalysts in the reduction of 4-nitrophenol at room temperature and atmospheric pressure. Kinet. Catal., 2020, 61(5), 794–800. DOI:https://doi.org/10.1134/S002315842005002X.
10. Begum R., Naseem Kh., Ahmed E., Sharif A., Farooqi Z.H. Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf., A: Physicochem. Eng. Asp., 2016, 511, 17-26. DOI:https://doi.org/10.1016/j.colsurfa.2016.09.076.
11. Begum R., Farooqi Z.H., Aboo A.H., Ahmed E., Sharif A., Xiao J. Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. J. Hazard. Mater., 2019, 377, 399-408. DOI:https://doi.org/10.1016/j.jhazmat.2019.05.080.
12. Naseem Kh., Begum R., Farooqi Z.H., Wu W., Irfan A. Core-shell microgel stabilized silver nanoparticles for catalytic reduction of aryl nitro compounds. Appl. Organomet. Chem., 2020, e5742. DOI:https://doi.org/10.1002/aoc.5742.
13. Liao G., Chen J., Zeng W., Yu Ch., Yi Ch., Xu Z. Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J. Phys. Chem. C., 2016, 120(45), 25935–25944. DOI:https://doi.org/10.1021/acs.jpcc.6b09356.
14. Giri S., Das R., van der Westhuyzen Ch., Maity A. An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite. Appl. Catal. B: Environmental, 2017, 209, 669 678. DOI:https://doi.org/10.1016/j.apcatb.2017.03.033.
15. Baran T. Bio-synthesis and structural characterization of highly stable silver nanoparticles decorated on a sustainable bio-composite for catalytic reduction of nitroarenes. J. Mol. Struct., 2019, 1182, 213-218. DOI:https://doi.org/10.1016/j.molstruc.2019.01.057.
16. Sivagami M., Asharani I.V. Catalytic reduction of nitroarenes by Cucumis maderaspatanus L. leaves extract mediated silver nanoparticles. J. Taiwan Inst. Chem. Eng., 2023, 104981. DOI:https://doi.org/10.1016/j.jtice.2023.104981.
17. Russo M., Armetta F., Riela S., Martino D.Ch., Lo Meo P., Noto R. Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. J. Molecular Cat. A.: Chem., 2015, 408, 250-261. DOI:https://doi.org/10.1016/j.molcata.2015.07.031.
18. Ahmad A., Roy Pr.Jh., Zhou Sh., Irfan A., Kanwal F., Begum R., Farooqi Z.H. Fabrication of silver nanoparticles within chitosan based microgels for catalysis. Int. J. Biol. Macromol., 2023, 240, 124401. DOI:https://doi.org/10.1016/j.ijbiomac.2023.124401.
19. Zheng Y., Zhu Y., Tian G., Wang A. In situ generation of silver nanoparticles within crosslinked 3D guar gum networks for catalytic reduction. Int. J. Biol. Macromol., 2015, 73, 39-44. DOI:https://doi.org/10.1016/j.ijbiomac.2014.11.007.
20. Sundharaiya K., Kabilan M., Karuthamani M., Sathish G., Santha S., Muthuramalingam S., Jayakumar M. Guar gum: A comprehensive review of its potential applications in pharmaceuticals, biomedicine, and the food industry. Ann. Phytomed., 2025, 14(1), 187-198. DOI:https://doi.org/10.54085/ap.2025.14.1.18.
21. Sharma G., Sharma Sh., Kumar A., Al-Muhtaseb A.H., Naushad M., Ghfar A.A., Mola G.T., Stadler F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym., 2018, 199, 534-545. DOI:https://doi.org/10.1016/j.carbpol.2018.07.053.
22. Petryayeva E., Krull U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing. A review. Anal. Chim. Acta. 2011, 706(1), 8-24. DOI:https://doi.org/10.1016/j.aca.2011.08.020.
23. Khan N., Kumar D., Kumar P. Silver nanoparticles embedded guar gum/gelatin nanocomposite: Green synthesis, characterization and antibacterial activity. Coll. Interface Sci. Commun., 2020, 35, 100242. DOI:https://doi.org/10.1016/j.colcom.2020.100242.



