Ivanovo, Ivanovo, Russian Federation
Ivanovo, Ivanovo, Russian Federation
UDC 546.742
UDC 546.223.1
The paper investigates the kinetics of the reaction of nickel chloride with sodium dithionite in an aqueous solution, proceeding with the formation of metallic nickel via the reduction of nickel cations. As a result, parallel to the main process stage, reactions of sodium dithionite decomposition occur, yielding sulfite, thiosulfate, and sulfide as final products. Based on the analysis of experimental data and literature, a stoichiometric mechanism of the process has been proposed. Using mathematical modelling, the inverse kinetic problem of determining the rate constants of individual process stages has been solved. According to the comparison of experimental and calculated kinetic dependencies, the proposed mathematical model correlates with the experimental data.
mechanism of the chemical reaction, kinetics modelling, rate constant, dithionite, nickel
1. Makarov S.V., Horvath A.K., Silaghi-Dumitrescu R., Gao Q. Sodium dithionite, rongalite and thiourea oxides: chemistry and application. Publisher: World Scientific Publishing Europe Ltd. 2016. 244 pp. DOI:https://doi.org/10.1142/q0028.
2. Chou Y.H., Yu J.H., Liang Y.M., Wang P.J., Li C.W., Chen S.S. Recovery of Cu(II) by chemical reduction using sodium dithionite. Chemosphere, 2015, 141, 183–188. DOI:https://doi.org/10.1016/j.chemosphere.2015.07.016.
3. Dong Z., Jiang T., Xu B., Wu J., Li Q., Yang Y. A comparative study of electrodeposition and sodium dithionite reduction for recovering gold in gold-rich solution from the adsorption of thiosulfate solution by ion exchange resin. Sep. Purif. Technol., 2024, 328, 125053. DOI:https://doi.org/10.1016/j.seppur.2023.125053.
4. Botelho A.B., Jiménez Correa M.M., Espinosa D.C.R., Tenório J.A.C. Study of the reduction process of iron in leachate from nickel mining waste. Braz. J. Chem. Eng., 2018, 35(4), 1241–1248. DOI:https://doi.org/10.1590/0104-6632.20180354s20170323.
5. Polenov Yu.V., Egorova E.V. Interaction of N,N´-substituted diimides of binaphthylhexacarboxylic acid with sodium dithionite in aqueous-alkaline acid solution. From Chemistry Towards Technology Step-by-Step, 2024, 5(4), 96–104. DOI:https://doi.org/10.52957/2782-1900-2024-5-4-96-104.
6. Neyt N.C., Riley D.L. Mild and selective reduction of aldehydes utilising sodium dithionite under flow conditions. Beilstein J. Org. Chem., 2018, 14(1), 1529–1536. DOI:https://doi.org/10.3762/bjoc.14.129.
7. Polenov Yu.V., Egorova E.V. Interaction of 7,7´-dioxo-7H,7´-H-3,3´-benzimidazo[2,1-a]benzo[de]isoquinolin-4, 4´-dicarboxylic acid with sodium dithionite in aqueous-alkaline solution. Izv. vuzov. Himiya i him. tekhnologiya [ChemChemTech], 2024, 67(6), 80–87. DOI:https://doi.org/10.6060/ivkkt.20246706.7056. (in Russian).
8. Srikanth D., Shejul G.D., Joshi S.V., Kalam A., Jahnavi A.S., Dikundwar A.G., Chopra S., Yaddanapudi M.V., Nanduri S. Transition metal-free one-pot tandem chemoselective reduction and cyclization of 3/5-(2-nitrophenyl)-1H-pyrazoles using sodium dithionite. Org. Biomol. Chem., 2025, 23(24), 5812-5820. DOI:https://doi.org/10.1039/D5OB00610D.
9. Egorova E.V., Makarov S.V., Budanov V.V., Akbarov D.N. Kinetics of Ni2+ reduction by sodium dithionite. ZhOKh. (Russian Journal of General Chemistry), 1991, 61(3), 542–546 (in Russian).
10. Ĉermak V., Smutek M. Mechanism of decomposition of dithionite in aqueous solutions. Collect. Czech. Chem. Commun., 1975, 40(11), 3241–3264.
11. Dobosh D. Electrochemical Constants. Moscow: Mir, 1980, 368 p. (In Russian).
12. Alekseev V.N. Quantitative Analysis. Moscow: Khimiya, 1972, 504 p. (In Russian).
13. Akhmetov T.G., Lisina N.V. Analytical Methods for Monitoring the Production of Barium and Sulfite Salts. Moscow: Khimiya, 1974, 199 p. (In Russian).
14. Burlamacchi L., Casini G., Fagioli O., Tiezzi E. The air oxidation of free radicals to form superoxide and regenerate bisulfite. Ricerca scient, 1967, 37, 97–101.
15. Balahura R.J., Jonson M.D. Outer-sphere dithionite reductions of metal complexes. Inorg. Chem., 1987, 26(23), 3860–3863. DOI:https://doi.org/10.1021/ic00270a010.
16. Lem W.J., Wayman M. Decomposition of aqueous dithionite. Part I. Kinetics of decomposition of aqueous sodium dithionite. Can. J. Chem., 1970, 48(5), 776–781. DOI:https://doi.org/10.1139/v70-126.
17. Holman D.A., Bennett D.W. A multicomponent kinetics study of the anaerobic decomposition of aqueous sodium dithionite. J. Phys. Chem., 1994, 98(50), 13300–13307. DOI:https://doi.org/10.1021/j100101a032.



