METHODS OF TG, DSC, AND SYNCHROTRON ANALYSIS FOR ENHANCING THE REACTIVITY OF ALUMINUM-BASED METALLIC FUELS
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
The paper demonstrates the capabilities of thermal and X-ray phase analysis of the interaction products for developing modification methods of aluminum-based powders. It provides searching for optimal synthesis regimes of new metallic fuels for composite energetic systems of various purposes. The importance and utility of applying considered methods for selection the composition and synthesis conditions of promising materials have been evaluated.

Keywords:
vanadium-containing hydrogel; activation; oxidation completeness; aluminum; powders; programmable heating
Text
Text (PDF): Read Download
References

1. Pokhil P.F., Belyaev A.F., Frolov Yu.V., Logachev V.S., Korotkov A.I. Combustion of Powdered Metals in Active Media. Moscow: Nauka, 1972, 294 p. (In Russian).

2. Alikin V.N., Vakhrushev A.V., Golubchikov V.B., Ermilov A.S., Lipanov A.M., Serebrennikov S.Yu. Solid Propellants for Rocket Engines. Ed. by Academician A.M. Lipanov. Moscow: Mashinostroenie, 2011, 380 p. (In Russian).

3. Gromov A.A., Sergienko A.V., Popenko E.M., Slyusarsky K.V., Larionov K.B., Dzidziguri E.L., Nalivaiko A.Y. Characterization Aluminum Powders: III. Non-Isothermal Oxidation and Combustion of Modern Aluminized Solid Propellants with Nanometals and Nanooxides. Propellants Exlos. Pyrotech., 2020, 45, 1-12. DOI: https://doi.org/10.1002/prep.201900163.

4. Glotov O.G. Screening of metal fuels for use in composite propellants for ramjets. Prog. Aeronaut. Sci., 2023, 143, 1-25. DOI:https://doi.org/10.1016/j.paerosci.2023.100954.

5. Liu Y., Wang Y., Liu Y., Zhao B, Liu W., Yan Q., Fu X. High calorific values boron powder: ignition and combustion mechanism, surface modification strategies and properties. Molecules, 2023, 28, 1-29. DOI:https://doi.org/10.3390/molecules28073209.

6. Han L., Wang R., Chen W., Wang Z., Zhu X., Huang T. Preparation and combustion mechanism of boron-based high-energy fuels. Catalysts, 2023, 13, 1-16. DOI:https://doi.org/10.3390/catal13020378.

7. Gopienko V.G. Metal Powders of Aluminum, Magnesium, Titanium, and Silicon. Consumer Properties and Applications; ed. by A.I. Rudskoy. St. Petersburg: Izd-vo Politekhn. Un-ta, 2012, 356 p. (In Russian).

8. Korotkikh A.G. Impact of Aluminum Powder Dispersion on Ignition and Non-Stationary Combustion Processes of Heterogeneous Condensed Systems. Dr. Sci. (Phys.-Math.) Dissertation. Tomsk, 2012, 302 p. (In Russian).

9. Eselevich D.A. Study of the Activity and Completeness of Oxidation of Dispersed Aluminum Modified with Surfactants of Various Nature (Ca, Ba, V2O5). Cand. Sci. (Chem.) Dissertation. Yekaterinburg, 2015, 121 p. (In Russian).

10. Kononenko V.I., Shevchenko V.G. Physical Chemistry of Activation of Disperse Systems Based on Aluminum. Yekaterinburg: UrO RAN, 2006, 238 p. (In Russian).

11. Shevchenko V.G. Effect of alloying on the kinetics and mechanism of oxidation of powdered aluminum-based alloys with rare- and alkaline-earth metals. Combust. Explos. Shock Waves, 2011, 47, 166-173. DOI:https://doi.org/10.1134/S0010508211020043.

12. Shevchenko V.G., Volkov V.L., Kononenko V.I., Zakharova G.S., Chupova I.A. Effect of sodium and potassium polyvanadates on aluminum-powder oxidation. Combust. Explos. Shock Waves, 1996, 32(4), 436 438. DOI:https://doi.org/10.1007/BF01998494.

13. Shevchenko V.G., Eselevich D.A., Konyukova A.V., Krasilnikov V.N. Russian Patent No. 2509790, 2014. (In Russian).

14. Shevchenko V.G., Eselevich D.A., Konyukova A.V., Krasil’nikov V.N. Effect of Vanadium Containing Activating Additives on the Oxidation of Aluminum Powders. Russ. J. Phys. Chem. B, 2014, 8(5), 634-640. DOI:https://doi.org/10.1134/S1990793114050224.

15. Aulchenko V.M., Evdokov O.V., Kutovenko V.D., Pirogov B.Ya., Sharafutdinov M.R., Titov V.M., Tolochko B.P., Vasiljev A.V., Zhogin I.A., Zhulanov V.V. One-coordinate X-ray detector OD-3M. Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 603(1-2), 76-79. DOI:https://doi.org/10.1016/j.nima.2008.12.164.

16. Ancharov A.I., Manakov A.Yu., Mezentsev N.A., Tolochko B.P., Sheromov M.A., Tsukanov V.M. New station at the 4th beamline of the VEPP-3 storagering. Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 470(12), 80-83. DOI:https://doi.org/10.1016/S0168-9002(01)01029-4.

17. Libenson, G.A. Fundamentals of Powder Metallurgy. Moscow: Metallurgiya, 1975, 200 p. (In Russian).

18. Antsiferov V.N., Bobrov G.V., Druzhinin L.K. Powder Metallurgy and Sprayed Coatings. Moscow: Metallurgiya, 1987, 792 p. (In Russian).

19. Barka D., Weis V. Powder Metallurgy of Special Purpose Materials. Moscow: Metallurgiya, 1977, 376 p. (In Russian).

20. Silaev V.A., Putimtsev B.N. Production of Alloyed Powders by Melt Atomization with Nitrogen. In: Production, Properties and Applications of Metal Powders. Kiev: IPM AN SSSR, 1976, 144 p. (In Russian).

21. Doronin N.A. Calcium. Moscow: Gosatomizdat, 1962, 191 p. (In Russian).

22. Lyakishev P.P. Phase Diagrams of Binary Metal Systems: Handbook. Vol. 1. Moscow: Mashinostroenie, 1997, 992 p. (In Russian).

23. Lokshin E.P., Voskoboinikov N.B. Barium and Its Properties. Apatity: KNTs RAN, 1996, 168 p. (In Russian).

24. Shevchenko V.G., Latosh I.N., Grigorov I.S., Chupova I.A., Kochedykov V.A. Role of Intermetallics in the Oxidation of Al-REE System Powders. Rasplavy [Melts], 2009, (3), 60-68. (In Russian).

25. Bykov V.A., Uporov V.B., Sidorov V.E. Magnetic Susceptibility of Dilute Al-Ce Alloys at High Temperatures. Rasplavy [Melts], 2006, (6), 19-24. (In Russian).

26. Volkovich A.V., Zhuravlev I.S., Trofimov I.S., Gorbachev A.E. Thermodynamic Properties of Barium in Liquid Alloys with Aluminum and Their Prediction for Alkaline Earth Metals in Other Alloys. Rasplavy [Melts], 2008, (5), 16-24. (In Russian).

27. Shevchenko V.G., Kuznetsov M.V., Bibanaeva S.A., Konyukova A.V., Chupova I.A, Latosh I.N., Kochedykov V.A., Eselevich D.A. Segregation of calcium on the surface of aluminum-based powders and its effect on oxidation kinetics. Prot. Met. Phys. Chem. Surf., 2012, 48, 631-635. DOI:https://doi.org/10.1134/S2070205112050115

28. Shevchenko V.G., Eselevich D.A., Ancharov A.I., Tolochko B.P. Effect of barium on the oxidation kinetics of an aluminum-based alloy powder. Combust. Explos. Shock Waves, 2014, 50(6) 647-652. DOI:https://doi.org/10.1134/S0010508214060045.

29. Shevchenko V.G., Krasil’nikov V.N., Eselevich D.A., Konyukova A.V., Ancharov A.I., Tolochko B.P. Effect of V2O5 on the Oxidation Mechanism of ASD-4 Powder. Combust. Explos. Shock Waves, 2015, 51(5) 572-577. DOI:https://doi.org/10.1134/S0010508215050081.

30. Krasilnikov V.N., Eselevich D.A., Koniukova A.V., Shevchenko V.G. Russian Patent No. 2670440, 2018. (In Russian).

31. Kumar S., Krishnamurthy N. Synthesis of V-Ti-Cr alloys by aluminothermy co-reduction of its oxides. Process. Appl. Ceram., 2011, 5, 181-186. DOI:https://doi.org/10.2298/PAC1104181K.

32. Stamatis D., Zhu X., Schoenitz M., Dreizin E.L., Redner P. Consolidation and mechanical properties of reactive nanocomposite powders. Powder Technol., 2011, 208(3), 637-642. DOI:https://doi.org/10.1016/j.powtec.2011.01.002.

33. Yeh C.L., Wang H.J. Formation of Ta-Al intermetallics by combustion synthesis involving Al-based thermite reactions. J. Alloys Compd., 2010, 491(1-2), 153-158. DOI:https://doi.org/10.1016/j.jallcom.2009.10.203.

34. Shevchenko V.G., Krasil’nikov V.N., Yeselevich D.A., Konyukova A.V. Oxidation of Powdered Aluminum after Surface Modification with Mn, Fe, Co, and Ni Formates. Prot. Met. Phys. Chem. Surf., 2019, 55(1) 21-27. DOI:https://doi.org/10.1134/S2070205119010210.

35. Shevchenko V.G., Bulatov M.A., Kononenko V.I., Chupova I.A., Latosh I.N. Impact of the Properties of the Surface Oxide Layer on the Oxidation of Aluminum Powders. Powder Metallurgy, 1988, (2), 1-5. (In Russian).

36. Sharipova N.S., Ksandopulo G.I. Phase and structural transfomations and mechanism of propagation of self-propagating high-temperature synthesis in a V2O5-Al mixture. Combust Explos Shock Waves, 1997, 33, 659 668. DOI:https://doi.org/10.1007/BF02671798.

37. Mear F.O., Louzguine-Luzgin D.V., Inoue A. Structural investigations of rapidly solidified Mg-Cu-Y. J. Alloys Compd., 2010, 496(1), 149-154. DOI:https://doi.org/10.1016/j.jallcom.2010.01.159.

38. Slobodin B.V., Glazyrin M.P., Fotiev A.A. Phase Composition of Vanadium-Containing Slags from Steam Generators. Thermal Engineering, 1978, (3), 40-43 (in Russian).

39. Woo K.D., Kim J.H., Kwon E.P., Moon M.S., Lee H.B., Sato T., Liu Z. Fabrication of Al Matrix Composite Reinforced with Submicrometer-Sized Al2O3 Particles Formed by Combustion Reaction between HEMM Al and V2O5 Composite Particles during Sintering. Met. Mater. Int., 2010, 16, 213-218. DOI:https://doi.org/10.1007/s12540-010-0408-x.

40. Dabrowska G., Tabero P., Kurzawa M. Phase relations in the Al2O3-V2O5-MoO3 system in the solid state. The crystal structure of AlVO4. J. Phase Equilib. Diffus., 2009, 30(3), 220-229. DOI:https://doi.org/10.1007/s11669-009-9503-4.

41. Shevchenko V.G., Eselevich D.A., Popov N.A., Krasil’nikov V.N., Vinokurov Z.S., Ancharov A.I., Tolochko B.P. Oxidation of ASD-4 Powder Modified by V2O5. Combust. Explos. Shock Waves, 2018, 54(1), 58 63. DOI:https://doi.org/10.1134/S0010508218010094.

42. Andrievskii R.A., Khachoyan A.V. Role of Size Effects and Interfaces in the Physicochemical Properties of Consolidated Nanomaterials. Russian Journal of General Chemistry, 2009, 52(2), 4-14 (in Russian).

43. Rusanov A.I. Colloid-Chemical Aspects of Nanoscience: Nanostructured Materials: Preparation, Properties, Applications. Minsk: Belaruskaya Navuka, 2009, 71-90 (in Russian).

44. A Rietveld extended program to perform the combined analysis: diffraction, fluorescence and reflectivity data using X-ray, neutron, TOF or electrons. Available at: http://maud.radiographema.eu (accessed 10.06.2025).

45. Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. Available at: http://www.crystallography.net (accessed 12.06.2025).

46. Ye X., Lin. D., Jiao Z., Zhang L. The thermal stability of nanocrystalline maghemite Fe2O3. J. Phys. D: Appl. Phys., 1998, 31, 2739–2744. DOI:https://doi.org/10.1088/0022-3727/31/20/006.

47. Duraes L., Costa B.F.O., Santos R., Correia A., Compos J., Portugal A. Fe2O3/aluminum thermite reaction intermediate and final products characterization. Mater. Sci. Eng. A., 2007, 465(1-2), 199-210. DOI:https://doi.org/10.1016/j.msea.2007.03.063.

48. Liu Y., Qian Q., Xu C., Min F., Zhang M. Synthesis of FeAl/Al2O3 Composites by Thermite Reaction. Asian J. Chem., 2013, 25(10), 5550-5552. DOI:https://doi.org/10.14233/ajchem.2013.OH14.

49. Wang Y., Song X.I., Jiang W., Deng G., Guo X., Liu H., Li F. Mechanism for thermite reactions of aluminum/iron-oxide nanocomposites based on residue analysis. Trans. Nonferrous Met. Soc. China., 2014, 24(1), 263-270. DOI:https://doi.org/10.1016/S1003-6326(14)63056-9.

50. Monogarov K.A., Pivkina A.N., Grishin L.I., Frolov Y.V., Dilhan D. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy. Acta Astronautica, 2017, 135, 69–75. DOI:https://doi.org/10.1016/j.actaastro.2016.10.031

Login or Create
* Forgot password?