Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
UDC 539.26
UDC 548.73
V nastoyaschey rabote pokazany vozmozhnosti termicheskogo i rentgenovskogo fazovogo analizov produktov vzaimodeystviya pri razrabotke sposobov modifikacii poroshkov na osnove alyuminiya i poiske optimal'nyh rezhimov sinteza novyh metallicheskih goryuchih dlya smesevyh energeticheskih sistem razlichnogo naznacheniya. Ocenena vazhnost' i poleznost' ispol'zovaniya kompleksa rassmotrennyh metodov dlya vybora sostava i usloviy sinteza perspektivnyh materialov.
vanadiysoderzhaschiy gidrogel', aktivaciya i polnota okisleniya, alyuminiy, poroshki, programmiruemyy nagrev
1. Pohil P.F., Belyaev A.F., Frolov Yu.V., Logachev V.S., Korotkov A.I. Gorenie poroshkoobraznyh metallov v aktivnyh sredah. M.: Izd-vo «Nauka», 1972, 294s.
2. Alikin V.N., Vahrushev A.V., Golubchikov V.B., Ermilov A.S., Lipanov A.M., Serebrennikov S.Yu. Tverdye topliva raketnyh dvigateley. Pod red. Akademika A.M. Lipanova, M.: Mashinostroenie, 2011, 380s.
3. Gromov A.A., Sergienko A.V., Popenko E.M., Slyusarsky K.V., Larionov K.B., Dzidziguri E.L., Nalivaiko A.Y. Characterization Aluminum Powders: III. Non-Isothermal Oxidation and Combustion of Modern Aluminized Solid Propellants with Nanometals and Nanooxides. Propellants Exlos. Pyrotech., 2020, 45, 1-12. DOI:https://doi.org/10.1002/prep.201900163.
4. Glotov O.G. Screening of metal fuels for use in composite propellants for ramjets. Prog. Aeronaut. Sci., 2023, 143, 1-25. DOI:https://doi.org/10.1016/j.paerosci.2023.100954.
5. Liu Y., Wang Y., Liu Y., Zhao B, Liu W., Yan Q., Fu X. High calorific values boron powder: ignition and combustion mechanism, surface modification strategies and properties. Molecules, 2023, 28, 1-29. DOI:https://doi.org/10.3390/molecules28073209.
6. Han L., Wang R., Chen W., Wang Z., Zhu X., Huang T. Preparation and combustion mechanism of boron-based high-energy fuels. Catalysts, 2023, 13, 1-16. DOI:https://doi.org/10.3390/catal13020378.
7. Gopienko V.G. Metallicheskie poroshki alyuminiya, magniya, titana i kremniya. Potrebitel'skie svoystva i oblasti primeneniya; pod red. A.I. Rudskogo. SPb.: Izd-vo Politehn. Un-ta, 2012, 356s.
8. Korotkih A.G. Vliyanie dispersnosti poroshka alyuminiya na processy zazhiganiya i nestacionarnogo goreniya geterogennyh kondensirovannyh sistem. Dissertaciya na soisk. uch. step. d. f.- m.n. Tomsk, 2012, 302s.
9. Eselevich D.A. Issledovanie aktivnosti i polnoty okisleniya dispersnogo alyuminiya, modificirovannogo PAV razlichnoy prirody (Ca, Ba, V2O5), dis. kand. him. nauk. Ekaterinburg, 2015, 121 s.
10. Kononenko V.I., Shevchenko V.G. Fizikohimiya aktivacii dispersnyh sistem na osnove alyuminiya. Ekaterinburg: UrO RAN, 2006, 238s.
11. Shevchenko V.G. Vliyanie legirovaniya na kinetiku i mehanizm okisleniya poroshkov splavov na osnove alyuminiya s redko- i schelochnozemel'nymi metallami. FGV, 2011, 47(2), 45-53.
12. Shevchenko V.G., Volkov V.L., Kononenko V.I., Zaharova G.S., Chupova I.A. Vliyanie polivanadatov natriya i kaliya na process okisleniya poroshka alyuminiya. FGV, 1996, 32(4), 91-94.
13. Shevchenko V.G., Eselevich D.A., Konyukova A.V., Krasil'nikov V.N. RF Pat. № 2509790, 2014.
14. Shevchenko V.G., Eselevich D.A., Konyukova A.V., Krasil'nikov V.N. Vliyanie vanadiysoderzhaschih aktiviruyuschih dobavok na okislenie poroshkov alyuminiya. Himicheskaya fizika, 2014, 33(10), 10-17. DOI:https://doi.org/10.7868/S0207401X14100112
15. Aulchenko V.M., Evdokov O.V., Kutovenko V.D., Pirogov B.Ya., Sharafutdinov M.R., Titov V.M., Tolochko B.P., Vasiljev A.V., Zhogin I.A., Zhulanov V.V. One-coordinate X-ray detector OD-3M. Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 603(1-2), 76-79. DOI:https://doi.org/10.1016/j.nima.2008.12.164
16. Ancharov A.I., Manakov A.Yu., Mezentsev N.A., Tolochko B.P., Sheromov M.A., Tsukanov V.M. New station at the 4th beamline of the VEPP-3 storagering. Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 470(12), 80-83. DOI:https://doi.org/10.1016/S0168-9002(01)01029-4.
17. Libenson, G.A. Osnovy poroshkovoy metallurgii. M.: Metallurgiya, 1975, 200s.
18. Anciferov V.N., Bobrov G.V., Druzhinin L.K. Poroshkovaya metallurgiya i napylennye pokrytiya. M.: Metallurgiya, 1987, 792s.
19. Barka D., Veys V. Poroshkovaya metallurgiya materialov special'nogo naznacheniya. M.: Metallurgiya, 1977, 376s.
20. Silaev V.A., Putimcev B.N. Poluchenie legirovannyh poroshkov raspyleniem rasplavov azotom. Poluchenie, svoystva i primenenie metallicheskih poroshkov. Kiev: IPM AN SSSR, 1976, 144s.
21. Doronin N. A. Kal'ciy. M.: Gosatomizdat, 1962, 191s.
22. Lyakishev P.P. Diagrammy sostoyaniya dvoynyh metallicheskih sistem: Spravochnik: v 3 t: t 1. M.: Mashinostroenie, 1997, 992s.
23. Lokshin E.P., Voskoboynikov N.B. Bariy i ego svoystva. Apatity: KNC RAN, 1996, 168s.
24. Shevchenko V.G., Latosh I.N., Grigorov I.S., Chupova I.A., Kochedykov V.A. Rol' intermetallidov v processe okisleniya poroshkov sistem Al-RZM. Rasplavy, 2009, (3), 60-68.
25. Bykov V.A., Uporov V.B., Sidorov V.E. Magnitnaya vospriimchivost' razbavlennyh splavov Al-Ce pri vysokih temperaturah. Rasplavy, 2006, (6), 19-24.
26. Volkovich A.V., Zhuravlev I.S., Trofimov I.S., Gorbachev A.E. Termodinamicheskie svoystva bariya v zhidkih splavah s alyuminiem i ih prognozirovanie dlya schelochnozemel'nyh metallov v drugih splavah. Rasplavy, 2008, (5), 16-24.
27. Shevchenko V.G., Kuznecov M.V., Bibanaeva S.A., Konyukova A.V., Chupova I.A., Latosh I.N., Kochedykov V.A., Eselevich D.A. Poverhnostnaya segregaciya kal'ciya i ee vliyanie na kinetiku okisleniya poroshkov splavov na osnove alyuminiya. FPZM, 2012, 48(6), 540-545. DOI:https://doi.org/10.1134/S2070205112050115.
28. Shevchenko V.G., Eselevich D.A., Ancharov A.I., Tolochko B.P. Vliyanie bariya na kinetiku okisleniya poroshka splava na osnove alyuminiya. FGV, 2014, 50(6), 28-33. DOI:https://doi.org/10.1134/S0010508214060045.
29. Shevchenko V.G., Krasil'nikov V.N., Eselevich D.A. Konyukova A.V., Ancharov A.I., Tolochko B.P. Vliyanie V2O5 na mehanizm okisleniya poroshka ASD-4. FGV, 2015, 51(5), 70-76. DOI:https://doi.org/10.15372/FGV20150508.
30. Krasil'nikov V.N., Eselevich D.A., Konyukova A.V., Shevchenko V.G. RF Pat. № 2670440, 2018.
31. Kumar S., Krishnamurthy N. Synthesis of V-Ti-Cr alloys by aluminothermy co-reduction of its oxides. Process. Appl. Ceram., 2011, 5, 181-186. DOI:https://doi.org/10.2298/PAC1104181K.
32. Stamatis D., Zhu X., Schoenitz M., Dreizin E.L., Redner P. Consolidation and mechanical properties of reactive nanocomposite powders. Powder Technol., 2011, 208(3), 637-642. DOI:https://doi.org/10.1016/j.powtec.2011.01.002.
33. Yeh C.L., Wang H.J. Formation of Ta-Al intermetallics by combustion synthesis involving Al-based thermite reactions. J. Alloys Compd., 2010, 491(1-2), 153-158. DOI:https://doi.org/10.1016/j.jallcom.2009.10.203.
34. Shevchenko V.G., Krasil'nikov V.N., Eselevich D.A., Konyukova A.V. Okislenie poroshkoobraznogo alyuminiya posle modifikacii poverhnosti formiatami Mn, Fe, Co i Ni. FPZM, 2019, 55(1), 25-32. DOI:https://doi.org/10.1134/S0044185619010212.
35. Shevchenko V.G., Bulatov M.A., Kononenko V.I., Chupova I.A., Latosh I.N. Vliyanie svoystv poverhnostnogo sloya oksida na okislenie poroshkov alyuminiya. Poroshkovaya metallurgiya, 1988, (2), 1-5.
36. Sharipova N.S., Ksandopulo G.I. Phase and structural transfomations and mechanism of propagation of self-propagating high-temperature synthesis in a V2O5-Al mixture. Combust Explos Shock Waves, 1997, 33, 659-668. DOI:https://doi.org/10.1007/BF02671798.
37. Mear F.O., Louzguine-Luzgin D.V., Inoue A. Structural investigations of rapidly solidified Mg-Cu-Y. J. Alloys Compd., 2010, 496(1), 149-154. DOI:https://doi.org/10.1016/j.jallcom.2010.01.159.
38. Slobodin B.V., Glazyrin M.P., Fotiev A.A. Fazovyy sostav vanadiysoderzhaschih shlakov parogeneratorov. Teploenergetika, 1978, (3), 40-43.
39. Woo K.D., Kim J.H., Kwon E.P., Moon M.S., Lee H.B., Sato T., Liu Z. Fabrication of Al Matrix Composite Reinforced with Submicrometer-Sized Al2O3 Particles Formed by Combustion Reaction between HEMM Al and V2O5 Composite Particles during Sintering. Met. Mater. Int., 2010, 16, 213-218. DOI:https://doi.org/10.1007/s12540-010-0408-x.
40. Dabrowska G., Tabero P., Kurzawa M. Phase relations in the Al2O3-V2O5-MoO3 system in the solid state. The crystal structure of AlVO4. J. Phase Equilib. Diffus., 2009, 30(3), 220-229. DOI:https://doi.org/10.1007/s11669-009-9503-4.
41. Shevchenko V.G., Eselevich D.A., Popov N.A., Vinokurov Z.S., Ancharov A.I., Tolochko B.P. Okislenie poroshka ASD-4, modificirovannogo V2O5. FGV, 2018, 54(1), 65-71. DOI:https://doi.org/10.15372/FGV20180109.
42. Andrievskiy R.A., Hachoyan A.V. Rol' razmernyh effektov i poverhnostey razdela v fiziko-himicheskih svoystvah konsolidirovannyh nanomaterialov. Ros. him. zhurn., 2009, 52(2), 4-14.
43. Rusanov A.I. Kolloidno-himicheskie aspekty nanonauki: Nanostrukturnye materialy: poluchenie, svoystva, primenenie. Minsk: Belarus. Navuka, 2009, 71-90.
44. A Rietveld extended program to perform the combined analysis: diffraction, fluorescence and reflectivity data using X-ray, neutron, TOF or electrons. Access mode: http://maud.radiographema.eu (10.06.2025).
45. Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. Access mode: http://www.crystallography.net (12.06.2025).
46. Ye X., Lin. D., Jiao Z., Zhang L. The thermal stability of nanocrystalline maghemite Fe2O3. J. Phys. D: Appl. Phys., 1998, 31, 2739–2744. DOI:https://doi.org/10.1088/0022-3727/31/20/006.
47. Duraes L., Costa B.F.O., Santos R., Correia A., Compos J., Portugal A. Fe2O3/aluminum thermite reaction intermediate and final products characterization. Mater. Sci. Eng. A., 2007, 465(1-2), 199-210. DOI:https://doi.org/10.1016/j.msea.2007.03.063.
48. Liu Y., Qian Q., Xu C., Min F., Zhang M. Synthesis of FeAl/Al2O3 Composites by Thermite Reaction. Asian J. Chem., 2013, 25(10), 5550-5552. DOI:https://doi.org/10.14233/ajchem.2013.OH14.
49. Wang Y., Song X.I., Jiang W., Deng G., Guo X., Liu H., Li F. Mechanism for thermite reactions of aluminum/iron-oxide nanocomposites based on residue analysis. Trans. Nonferrous Met. Soc. China., 2014, 24(1), 263-270. DOI:https://doi.org/10.1016/S1003-6326(14)63056-9.
50. Monogarov K.A., Pivkina A.N., Grishin L.I., Frolov Y.V., Dilhan D. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy. Acta Astronautica, 2017, 135, 69–75. DOI:https://doi.org/10.1016/j.actaastro.2016.10.031



