Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
This paper presents a comparative analysis of two time series models, ARIMA and ARIMAX, for the short-term forecasting of the Russian Ruble exchange rate. The relevance of this study is justified by the necessity to develop reliable forecasting tools for currency exchange rates within the context of contemporary economic challenges, including sanctions pressure, oil price fluctuations, and geopolitical instability. The research objective is to develop a time series model capable of performing short-term forecasts of the Ruble exchange rate, accounting for the current economic environment. The authors employ econometric analysis methods to construct two time series models where the dependent variable is the monthly average exchange rate of the RUB/USD currency pair. The ARIMA model does not account for the influence of exogenous variables, relying solely on the past values of the Ruble exchange rate, whereas the ARIMAX model incorporates exogenous variables to control for external factors. Utilizing statistical metrics, such as R² and MAPE, along with robustness checks via outlier testing and structural break analysis, the optimal model for short-term Ruble exchange rate forecasting was identified. The study results indicate that the ARIMA model is optimal for exchange rate forecasting. Based on the high explanatory power of both the ARIMAX and ARIMA models, the null hypothesis—that the Ruble exchange rate depends on its own past values—was confirmed. Consequently, the second hypothesis—that the Ruble’s dynamics are unpredictable and shaped by a multitude of qualitative factors difficult to incorporate into a model—was rejected.
russian ruble exchange rate, time series model, arima (autoregressive integrated moving average), arimax (autoregressive integrated moving average with exogenous variables), forecasting (preferred in this context)
1. Cbonds. Elektronnyy resurs. – URL: Cbonds.ru – provayder dannyh po finansovym rynkam. Obligacii, akcii, indeksy
2. InvestFunds. Elektronnyy resurs. – URL: InvestFunds sayt pro investicii i fondovye rynki
3. Investing.com. Elektronnyy resurs. – URL: Investing.com - kotirovki i finansovye novosti
4. Ageev A.I., Glaz'ev S.Yu., Mityaev D.A. [i dr.]. Postroenie modeli prognoza kursa valyut na dolgosrochnom i kratkosrochnom gorizontah // Ekonomicheskie strategii. – 2022. – T. 24, № 6(186). – S. 16-25.
5. Alehin B. I. Neft' i rubl': kollaps kointegracii //Finansovyy zhurnal. – 2021. – T. 13. – №. 1. – S. 58-74.
6. Andrianova E. G., Chukalina E. R. SRAVNENIE METODOV PROGNOZIROVANIYa FINANSOVYH VREMENNYH RYaDOV //IT-Standart. – 2021. – №. 2. – S. 40-45.
7. Bank Rossii: oficial'nyy sayt. – 2025. URL: Rezhim valyutnogo kursa Banka Rossii | Bank Rossii (cbr.ru)
8. Bedin A., Kulikov A., Polbin A. Modelirovanie svyazi kursa dollara k rublyu s cenami na neft' na osnove kopul //Den'gi i kredit. – 2023. – T. 82. – №. 3. – S. 87-109.
9. Bunevich K. G., Gorbacheva T. A. Sovremennaya harakteristika valyutnogo kursa rublya i platezhnogo balansa //Trud i social'nye otnosheniya. – 2021. – №. 2. – S. 112-123.
10. Vytnova A. O. Mirovoy valyutnyy rynok //Nauka, obrazovanie i kul'tura. – 2017. – №. 9 (24). – S. 22-24.
11. Gimadeev S. A., Tregub I. V. Modelirovanie valyutnogo kursa Rossii i zarubezhnyh stran //Sovremennaya ekonomika: problemy i resheniya. – 2017. – T. 4.
12. Zinenko A. V. Razrabotka algoritma modeli ARIMA dlya prognozirovaniya vremennyh ryadov na finansovyh rynkah. – 2023.
13. Karabut V. A., Rytikova E. A. Analiz dinamiki i prognozirovanie valyutnogo kursa //Fundamental'nye i prikladnye aspekty globalizacii ekonomiki. – 2021. – S. 308-311.
14. Karabut V. A., Rytikova E. A. ANALIZ DINAMIKI I PROGNOZIROVANIE VALYuTNOGO KURSA //Fundamental'nye i prikladnye aspekty globalizacii ekonomiki. – 2021. – S. 308-311.
15. Kiselev E. A., Novikova A. V. DINAMIKA I PROGNOZ VALYuTNYH KURSOV V RF V USLOVIYaH SANKCIY //Statisticheskiy analiz social'no-ekonomicheskogo razvitiya sub'ektov Rossiyskoy Federacii. – 2022. – S. 116-118.
16. Knyazeva E. G. i dr. Mezhdunarodnyy valyutnyy rynok i valyutnyy diling: uchebnoe posobie. – 2014.
17. Komarovskaya N. V. SPOSOBY IZMERENIYa EKONOMIChESKOY NEOPREDELENNOSTI //ETAP: ekonomicheskaya teoriya, analiz, praktika. – 2024. – №. 6. – S. 82-104.
18. Kornilov D. A., Bardakov A. A. Kakie faktory povliyali na rossiyskiy fondovyy i valyutnyy rynok v nachale 2022 goda? //Razvitie i bezopasnost'. – 2022. – №. 2 (14). – S. 66.
19. Ministerstvo Finansov Rossiyskoy Federacii: oficial'nyy sayt. – 2024. URL: Ministerstvo finansov Rossiyskoy Federacii (minfin.gov.ru)
20. Mironov, R. Yu. Analiz dinamiki kursa rublya i postroenie modeli / R. Yu. Mironov, E. A. Trushkov // Ekonomika i menedzhment innovacionnogo prostranstva razvivayuschihsya rynkov: sbornik statey Mezhdunarodnoy molodezhnoy nauchno-prakticheskoy konferencii v treh tomah, Moskva, 18 noyabrya 2021 goda. Tom III. – Moskva: Rossiyskiy universitet druzhby narodov (RUDN), 2021. – S. 91-96.
21. Moskovskaya birzha: oficial'nyy sayt. – 2024. URL: Moskovskaya Birzha (moex.com)
22. Skrinnikova A. V. Matematicheskie metody v prognozirovanii kursov valyutnyh par //VESTNIK. – 2023. – T. 2. – S. 91.
23. Suboch V. K., Kovalev M. M. Primenenie modeley ARIMA dlya prognozirovaniya valyutnogo kursa. – 2023.
24. Federal'naya sluzhba gosudarstvennoy statistiki: oficial'nyy sayt. – 2025. URL: Rosstat — Nacional'nye scheta (rosstat.gov.ru)
25. Ekspert Ra. Poryadok provedeniya proverki kachestva (validacii) reytingovyh metodologiy. –2024. URL: Poryadok provedeniya proverki kachestva (validacii) reytingovyh metodologiy | Ekspert RA
This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International



