MODELLING OF STRUCTURE AND CONCENTRATION CHARACTERISTICS OF WATER-ALCOHOL SOLUTIONS
Аннотация и ключевые слова
Аннотация (русский):
Water-alcohol solutions are widely used in pharmacy, food industry, engineering, etc. The study of their physical and chemical properties has a long history. Nevertheless, due to the complexity of these systems, there is still an interest in their research stimulated by the development of biochemistry in terms of the study and protection of the environment, global climate change, renewable energy resources and cosmochemistry. The purpose of the presented study is the quantum-chemical investigation of water clusters with methyl and ethyl alcohol molecules, as well as the modelling of concentration dependences of the excess molar volume of ethyl alcohol solution in water at different temperatures. Based on quantum-chemical calculations of paired and mixed complexes of water with methanol and ethanol, taking into account solvation effects, study reveals the formation of thermodynamically efficient complexes in liquid, in contrast to the ideal gas state, while in the mixture both individual solvated alcohol molecules and complexes will be in equilibrium. We noted a relative difference in the free energies of solvation of paired and mixed methanol and ethanol complexes. The paper proposes a technique for calculating the excess molar volume in water-alcohol mixtures by approximating the experimental dependences by Lejandre polynomials of the ninth degree. The calculation results showed high accuracy. Hence, continuous functions describe the dependences of the calculated coefficients of Lejandre polynomials on temperature.

Ключевые слова:
water-alcohol solutions, concentration characteristics, quantum-chemical calculations, density functional method, intermolecular interactions, excess molar volume, Lejandre polynomials
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Mendeleev, D.I. (1956) Solutions. M.: Izd-vo AS USSR (in Russian).

2. Lama, R.F. & Lu, B.C.-Y. (1965) Excess Thermodynamic Properties of Aqueous Alcohol Solutions, Journal of chemical and engineering data, 10(3), pp. 216-219 [online]. Available at: https://doi.org/10.1021/je60026a003

3. Benson, G.C. & Kiyohara, O. (1980) Thermodynamics of aqueous mixtures of nonelectrolytes. I. excess volumes of water-n-alcohol mixtures at several temperatures, Journal of Solution Chemistry, 9(10), pp. 791-804 [online]. Available at: https://doi.org/10.1007/BF00646798

4. Benson, G.C., D'Arcy, P.I. & Kiyohara, O. (1980) Thermodynamics of aqueous mixtures of nonelectrolytes ii. isobaric heat capacities of water-n-alcohol mixtures at 25 oC, Journal of Solution Chemistry, 9(12), pp. 931 938 [online]. Available at: https://doi.org/10.1007/BF00646404

5. Kiyohara, O. & Benson, G.C. (1981) Thermodynamics of aqueous mixtures of nonelectrolytes. III. Compressibilities and isochoric heat capacities of water-n-alcohol mixtures at 25 °C, Journal of Solution Chemistry, 10(4), pp. 281-290 [online]. Available at: https://doi.org/10.1007/BF00645017

6. Roux, A.H. & Desnoyers, J.E. (1987) Association models for alcohol-water mixtures, Proc. Indian Acad. Sci. (Chem. Sci.), 98(5-6), pp. 435-451 [online]. Available at: https://doi.org/10.1007/BF02861539

7. Liltorp, K, Westh, P. & Koga, Y. (2005) Thermodynamic properties of water in the water-poor region of binary water + alcohol mixtures, Can. J. Chem., 83, pp. 420–429 [online]. Available at: https://doi.org/10.1139/V05-050

8. Shostka, V.I. & Shostka, N.V. (2019) Metastable states of the fractal-cluster structure of alcohol-containing aqueous solutions, Journal of Physics: Conference Series, 1400(6), ID 066036 [online]. Available at: https://doi.org/10.1088/1742-6596/1400/6/066036

9. Li, R., D’Agostino, C., McGregor, J., Mantle, M.D., Zeitler, J.A. & Gladden, L.F. (2014) Mesoscopic Structuring and Dynamics of Alcohol/Water Solutions Probed by Terahertz Time-Domain Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance, J. Phys. Chem. B, 118, pp. 10156−10166 [online]. Available at: https://doi.org/10.1021/jp502799x

10. Noskov, S.Yu., Kiselev, M.G. & Kolker, A.M. (1999) Study of anomalous behaviour of heat capacity in methanol-water mixture by molecular dynamics method, Zhurnal strukturnoj khimii, 40(2), pp. 304-313 (in Russian).

11. Stephenson, S.K., Offeman, R.D., Robertson, G.H. & Orts, W.J. (2006) Ethanol and water capacities of alcohols: A molecular dynamics study, Chemical Engineering Science, 61(17), pp. 5834–5840 [online]. Available at: https://doi.org/10.1016/j.ces.2006.05.004

12. Zhong, Y., Warren, G.L. & Patel, S. (2008) Thermodynamic and structural properties of methanol-water solutions using non-additive interaction models, J. Comput. Chem., 29(7), pp. 1142–1152 [online]. Available at: https://doi.org/10.1002/jcc.20877

13. Kholmurodov, K., Dushanov, E., Yasuoka, K., et. al. (2011) Molecular dynamics simulation of the interaction of ethanol-water mixture with a Pt surface, Natural Science, 3(12), pp. 1011-1021 [online]. Available at: http://dx.doi.org/10.4236/ns.2011.312126

14. Dubovkina, I.A. (2012) Modelling of processes of hydration and structuring of ethanol under conditions of discrete-pulse energy input (DPEI) treatment, Vostochno-Evropejskij zhurnal peredovyh tehnologij, 6/6(60), pp. 50-52 (in Russian).

15. Gereben, O. & Pusztai, L. (2015) Investigation of the structure of ethanol−water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs, The Journal of Physical Chemistry B, 119(7), pp. 3070–3084 [online]. Available at: https://doi.org/10.1021/jp510490y

16. Cardona, J., Sweatman, M.B. & Lue, L. (2018) Molecular Dynamics Investigation of the Influence of the Hydrogen Bond Networks in Ethanol/Water Mixtures on Dielectric Spectra, The Journal of Physical Chemistry B, 122(4), pp. 1505–1515 [online]. Available at: https://doi.org/10.1021/acs.jpcb.7b12220

17. Monakhova, Y.B. & Mushtakova, S.P. (2006) Quantum-chemical study of the system of water-one-atom alcohols, Izvestija Saratovskogo universiteta. Novajaserija. Ser. Khimija, biologija, ekologija, 6(1/2), pp. 14-18 (in Russian).

18. Giricheva, N.I., Ischenko, A.A., Yusupov, V.I., Bagratashvili, V.N. & Girichev, G.V. (2014) Structure and energetics of methanehydrates, Izvestiya vuzov. Khimiya i khimicheskaya technologiya, 57(9), pp. 3-9 (in Russian).

19. Pal, J., Patla, A. & Subramanian, R. (2021) Thermodynamic properties of forming methanol-water and ethanol-water clusters at various temperatures and pressures and implications for atmospheric chemistry: A DFT study, Chemosphere, 272, ID 129846 [online]. Available at: https://doi.org/10.1016/j.chemosphere.2021.129846

20. Tables for determination of ethyl alcohol content in water-alcohol solutions (1999) M.: Izdatel'stvo standartov (in Russian).

21. Gotsul’skii, V.Ya., Malomuzh, N.P. & Chechko, V.E. (2013) Features of the Temperature and concentration dependences of the contraction of aqueous solutions of ethanol, Russian Journal of Physical Chemistry A, 87(10), pp. 1638–1644 [online]. Available at: https://doi.org/10.1134/S0036024413100087

22. Chechko, V.E., Gotsulsky, V.Ya. & Malomuzh, M.P. (2013) Peculiar points in the phase diagram of the water-alcohol solutions, Condensed Matter Physics, 16(2), 23006 [online]. Available at: https://doi.org/10.5488/CMP.16.23006

23. Bulavin, L.A., Gotsulskiy, V.Ya., Malomuzh, N.P. & Chechko, V.E. (2016) Relaxation and equilibrium properties of dilute aqueous solutions of alcohols, Izvestija Akademii nauk. Serija khimicheskaja, (4), pp. 851 876 (in Russian).

24. Hohenberg, P. & Kohn, W. (1964) Inhomogeneous Electron Gas, Phys. Rev., 136, 3B., pp. B864-B871 [online]. Available at: https://doi.org/10.1103/PhysRev.136.B864

25. Kohn, W. & Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140(4A), pp. A1133-A1138 [online]. Available at: https://doi.org/10.1103/PhysRev.140.A1133

26. Neese, F. (2012) The ORCA program system, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1), pp. 73–78 [online]. Available at: https://doi.org/10.1002/wcms.81

27. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. (2008) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree–Fock exchange, Chemical Physics, 356(1-3), pp. 98–109 [online]. Available at: https://doi.org/10.1016/j.chemphys.2008.10.036

28. Barone, V. & Cossi, M. (1998) Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, 102(11), pp. 1995–2001 [online]. Available at: https://doi.org/10.1021/jp9716997

29. Cioslowski J. (eds). (2002) Quantum-Mechanical Prediction of Thermochemical Data. New York: Kluwer Academic Publishers [online]. Available at: URL: https://doi.org/10.1007/0-306-47632-0

30. Perdew, J.P. & Schmidt, K. (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy, AIP Conf. Proc., 577, 1-20 p. [online]. Available at: https://doi.org/10.1063/1.1390175

31. Ben-Naim, A. & Marcus, Y. (1984) Solvation thermodynamics of nonionic solutes, J. Chem. Phys., 81, pp. 2016-2027 [online]. Available at: https://doi.org/10.1063/1.447824

32. Palascak, M.W. & Shields, G.C. (2004) Accurate Experimental Values for the Free Energies of Hydration of H+, OH-, and H3O+, J. Phys. Chem. A, 108(16), pp. 3692–3694 [online]. Available at: https://doi.org/10.1021/jp049914o

33. Varvarkin, S.V., Soloviev, M.E. & Gerasimova, N.P. (2022) Quantum-chemical study of the carboxylation reaction of 4-aminophenol, 4-acetylaminophenol and their salts in the synthesis of 5-aminosalicylic acid, From Chemistry Towards Technology Step-By-Step, 3(3), pp. 27-33 [online]. Available at: https://doi.org/10.52957/27821900_2022_03_27 (in Russian).

34. Marenich, A.V., Cramer, C.J. & Truhlar, D.G. (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Chem. Phys. B, 113, pp. 6378–6396 [online]. Available at: https://doi.org/10.1021/jp810292n

35. Karabekova, B.K., Bazaev, E.A. & Bazaev, A.R. (2015) Thermodynamic properties of water-aliphatic alcohol systems in a wide range of state parameters, Sverhkriticheskie Fljuidy:Teorija i Praktika, 10(1), pp. 35-60 (in Russian).

36. Kolbe, B. & Gmehling, J. (1985) Thermodynamic properties of ethanol + water II. potentials and limits of Ge models, Fluid Phase Equilibria, 23(2-3), pp. 227-242 [online]. Available at: https://doi.org/10.1016/0378-3812(85)90008-1

Войти или Создать
* Забыли пароль?