METAL CONTENT MONITORING IN THE BIOLOGICAL STRUCTURES
Аннотация и ключевые слова
Аннотация (русский):
The authors propose a monitoring method for defining metal content in the biological structures, such as plant leaves, tissue samples of animal origin, human skin, etc. The authors used dielectric barrier discharge (DBD) in air at atmospheric pressure as a diagnostic medium. According to the research, at the optimal selection of gas discharge parameters it will not have destructive effect on tissues of biological structure. Indeed, generation of chemically active particles in the plasma will be minimal one. The dielectric barrier separates the investigated sample from the electrode of the discharge system. DBD activation proceeds at frequencies close to the sound range (not more than 15 kHz). It was due to the requirement of ionic component emission only from cells on the surfaces of the structures under study. The conditions of low thermal effect of atmospheric pressure plasma on plant and animal sample provide the choice of DBD frequency range.

Ключевые слова:
metals, cations, biological structures, dielectric barrier discharge
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Poleshchenko, K.N., Korotaev, D.N., Semeniuk, N.A., Ivanova, E.V. & Kodentseva, I.V. (2023) The role of innovative integrated structures in the development of the high-tech sector of the regional economy, Rossijskij ekonomicheskij zhurnal, 5, pp. 80-96 [online]. Available at: https://doi.org/10.52210/0130-9757_2023_5_80 (accessed 10.01.2024) (in Russian).

2. Yablokov, M.Yu., Gil'man, A.B., Strel'tsov, D.R., Gaidar, A.I. & Kuznetsov, A.A. (2012) Film growth characteristics during plasma polymerization of 1-aminonaphthalene, High Energy Chemistry, 46(4), pp. 294-295. DOI:https://doi.org/10.1134/S0018143912040170.

3. Kravets, L.I., Lizunov, N.E., Satulu, V., Dinescu, G. & Gil'man, A.B. (2008) Preparation of composite membranes by means of plasma polymerization of tiophene, High Energy Chemistry, 42(5), pp. 391-398. DOI:https://doi.org/10.1134/S001814390805010X.

4. Zhang, B., Wang, D., Tang, J., Wang, X., Wei, Z., Nie, Z., Wang, B., Zhang, J., Xing, G. & Zhang, W. (2020) Ultrafast carrier relaxation dynamics of photoexcited GaAs and GaAs/AlGaAs nanowire array, PCCP: Physical Chemistry Chemical Physics, 22(44), pp. 25819-25826. DOI:https://doi.org/10.1039/d0cp04250a.

5. Sitanov, D.V. (2023) Physical aspects of the chemicalyy active medium formation in chlorine plasma under pulsed discharge energization, From Chemistry Towards Technology Step-By-Step, 4(1), pp. 124-135. DOI:https://doi.org/10.52957/27821900_2023_01_124 [online]. Available at: http://chemintech.ru/index.php/tor/2023-4-1 (accessed 10.01.2024).

6. Sitanov, D.V. & Pivovarenok, S.A. (2018) Visualization of defects on the semiconductor surface using a dielectric barrier discharge, Russian Microelectronics, 47(1), pp. 34-39. DOI:https://doi.org/10.1134/S1063739718010067.

7. Gushchin, A.A., Grinevich, V.I., Izvekova, T.V., Kvitkova, E.Y., Sulaeva, O.Y., Baburina, E.M. & Rybkin, V.V. (2022) Water purification to remove naphthalene by treatment with dielectric-barrier discharge in oxygen, High Energy Chemistry, 56(3), pp. 208-212. DOI:https://doi.org/10.1134/S0018143922020047.

8. Vasilets, V.N., Gutsol, A., Shekhter, A.B. & Fridman, A. (2009) Plasma medicine, High Energy Chemistry, 43(3), pp. 229-233. DOI:https://doi.org/10.1134/S0018143909030126.

9. Agafonov, A.V., Sirotkin, N.A., Titov, V.A. & Khlyustova, A.V. (2022) Plasma-solution synthesis of layered double hydroxides Zn-Al, Neorganicheskie materialy, 58(11), pp. 1177-1183. DOI:https://doi.org/10.31857/S0002337X2211001X (in Russian).

10. Sitanov, D.V. & Pivovarenok, S.A. (2018) Kinetics of atomic recombination on silicon samples in chlorine plasma, Plasma Physics Reports, 44(8), pp. 713-722. DOI:https://doi.org/10.1134/S0367292118080085.

11. Vasilets ,V.N. (2019) Plasmachemical generation of nitric oxides in air plasmas for medical applications, Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 62(5), pp. 4-13 (in Russian).

12. Podorozhniy, O.V., Rumyantsev, A.V., Volkov, R.L. & Borgardt, N.I. (2023) Modelling of the material atomization and gallium implantation processes under the influence of a focused ion beam on a silicon substrate, Izvestiya vuzov. Elektronika, 28(5), pp. 555-568. DOI:https://doi.org/10.24151/1561-5405-2023-28-5-555-568 (in Russian).

Войти или Создать
* Забыли пароль?