

Scientific article

UDC 547-327

DOI: 10.52957/2782-1900-2025-6-4-117-125

ALTERNATIVE METHOD FOR SYNTHESIS OF TETRACARBOXYLIC ACIDS WITH CYCLOALIPHATIC FRAGMENTS

A.A. Firstova¹, D.A. Ogorodnikov¹, Yu.R. Yusifova¹, E.R. Kofanov¹, A.S. Lebedev²

Anastasia Andreevna Firstova, Candidate of Chemical Sciences, Associate Professor; **Dmitry Alekseevich Ogorodnikov**, Student; **Yulia Ruslanovna Yusifova**, Student; **Evgeny Romanovich Kofanov**, Doctor of Chemical Sciences, Professor; **Anton Sergeevich Lebedev**, Candidate of Chemical Sciences, Associate Professor

¹Yaroslavl State Technical University, 150023, Russia, Yaroslavl, 88 Moskovsky pr.; *firstovaaa@ystu.ru*

²P.G. Demidov Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, Russia, 150003;

Keywords:

Friedel-Crafts
alkylation,
tetracarboxylic acids,
cycloaliphatic fragment

Abstract. The tetracarboxylic acids containing a cycloaliphatic fragment are promising monomers for semi-aromatic polymers of a series of polyimides, polyesters, and polyetherimides. An alternative method has been developed for their synthesis. The method demonstrates the possibility of performing alkylation and acylation reactions in sequence. The choice of the combination of methods for the oxidation of the acyl and methyl groups has been confirmed by quantum chemical calculations.

For citation:

Firstova A.A., Ogorodnikov D.A., Yusifova Yu.R., Kofanov E.R., Lebedev A.S. Alternative method for synthesis of tetracarboxylic acids with cycloaliphatic fragments // From Chemistry Towards Technology Step-by-Step. 2025. Vol. 6, Iss. 4. P. 117-125. URL: <https://chemintech.ru/ru/nauka/issue/6713/view>

Introduction

Highly effective polymers based on semi-aromatic monomers with rigid alicyclic fragments (derivatives of 4-aryl-1,2-norbornane dicarboxylic acid and 4-aryl-1,2-cyclohexanedicarboxylic acid) are of considerable interest for obtaining of new-generation materials. The combination of cycloaliphatic elements in the monomer structure with aromatic substituents and functional groups (carboxyl and carbonyl groups, imide cycle) is used for design of polyesters, polyimideketones and polyetherimideketones, polyimides with a wide range of required properties [1-4]. For example, 4-phenylhexahydro-2-benzofuran-1,3-dione enables obtaining the thermosetting composites for use in displays [5, 6]. Patent [7] describes the use of cycloaliphatic epoxy resins to improve the characteristics of materials used in electronic devices: increasing the glass transition temperature and ensuring a good flat surface. In [4], a composite based on 5-norbornene-2,3-dicarboxylic acid anhydride demonstrated a significant improvement in mechanical properties.

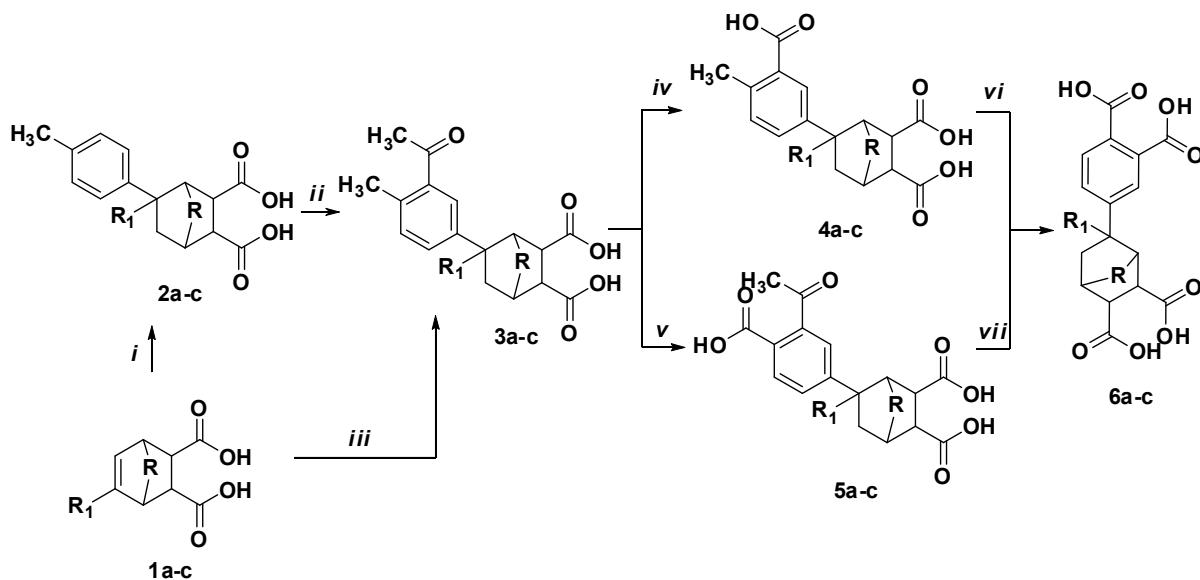
The paper [8] describes the synthesis of a new siloxane-norbornane dianhydride by hydrosilylation of endic acid anhydride with tetramethyldisiloxane. Based on this compound, an epoxy precursor has been developed. The authors claim that the developed material

combines improved chemical stability, thermal stability and mechanical behaviour, eliminating the problem of phase separation of classical analogues.

The introduction of cyclohexane fragments improves the thermal and mechanical properties of polymers. In addition, polymers with cyclohexane fragments are biodegradable. These results convincingly demonstrate that a simple cyclohexane ring can be used as a biodegradable building block. Those is rigid and exhibits improved thermal and physical properties [9].

The synthesis of arylcycloaliphatic fragments can be performed using alkylation reactions as a method for forming C-C bonds. The paper [10] describes a highly efficient palladium-based catalyst used for the alkylation reaction of phenyl iodide with a wide range of bicyclic alkenes, in particular alkenes with norbornene, norbornadiene, oxa-, and azabicyclic fragments. Such palladium-based catalysts show enormous superiority in many respects due to their stability to air and moisture, the use of catalytic amounts, and high efficiency. In 2015, Miuras et al. [11] reported on a rhodium-catalysed electrophilic substitution reaction with the formation of di-, tri-, and tetra-substituted arenes.

In 2006, the scientists tested the activity of various Lewis and Brønsted acids in the Friedel-Crafts alkylation reaction [12]. According to the studies, transition metal salts, such as HAuCl_4 , IrCl_3 , $[\text{MesW}(\text{CO})_3]$, RhCl_3 , H_2PdCl_4 , H_2PtCl_6 and FeCl_3 , are the most effective ones. Iron chloride is an alternative to rare earth triflates because it is non-toxic, inexpensive, and available [13]. Another example of the use of transition metal salts is the cobalt diphosphine catalyst. It promotes the addition of arylzinc reagent to norbornene derivatives [14].

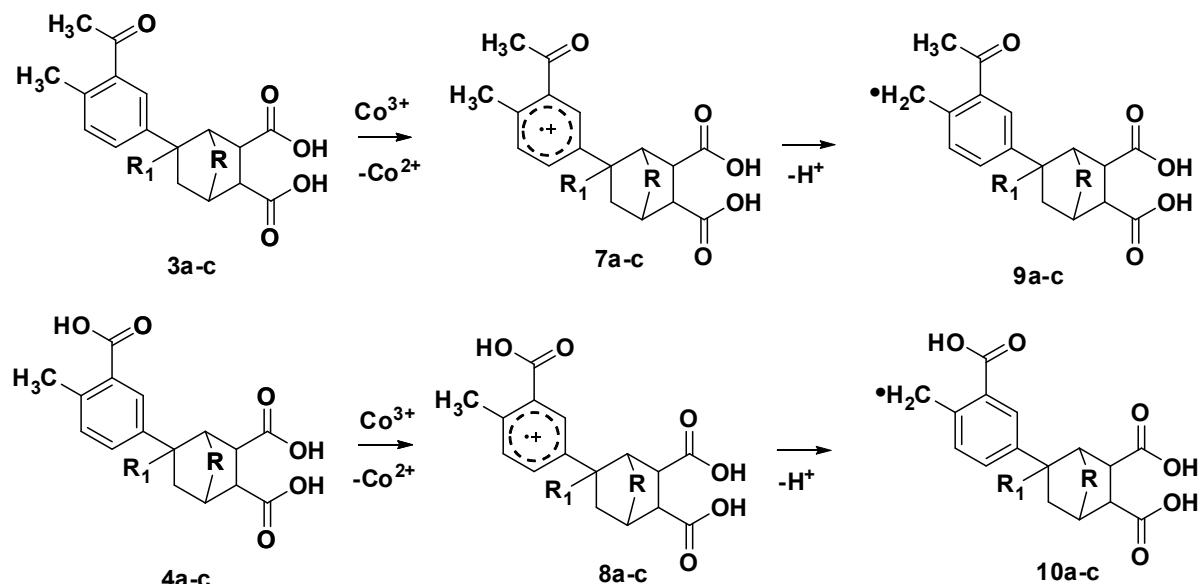

The catalysis of cycloalkenes with aromatic compounds is described using copper salts and can be successfully replaced in the case of expensive palladium-based catalysts [15]. New catalytic approaches, namely alkylation of arenes and heteroarenes according to Friedel-Crafts using only catalytic amounts of Lewis acid, have advantages over the classical Friedel-Crafts reaction conditions, since benzyl, propargyl and allyl alcohols or styrenes can be used instead of toxic benzyl halides [16].

Thus, the development of methods for synthesising new cyclohexane-containing monomers and establishing their basic physicochemical parameters for subsequent use in polycondensation reactions is a relevant issue.

Main body

Previously, articles [17, 18] described a method for obtaining structures with cycloalkane fragments. We propose an alternative method for synthesising compounds based on a combination of alkylation-acylation reactions and subsequent oxidation (Scheme 1).

4-(3-Acetyl-4-methylphenyl)cycloalkyl dicarboxylic acids **3a-c** were obtained by two methods. The first one includes the sequential interaction of toluene with cycloalkene-1,2-dicarboxylic acids **1a-c** in the presence of a catalyst with the isolation of the resulting 4-methylphenylcycloalkyl dicarboxylic acids **2a-c** and their subsequent reaction with acetyl chloride in the presence of an aluminium chloride catalyst – AlCl_3 . The yield was 64% in two stages.


(a): R = none, R₁ = H; (b): R = CH₂, R₁ = H, (c): R = none, R₁ = CH₃

i: PhMe, AlCl₃, 40 °C, 4 h; ii: AcCl, CHCl₃; iii: PhMe, AlCl₃, AcCl; v, vi: O₂, Co(AcO)₂, Mn(AcO)₂, NaBr; iv, vii: NaOH, Br₂

Scheme 1

The second one was a single-reactor method of alkylation of toluene with cycloalken-1,2-dicarboxylic acids **1a-c** followed by acylation. In this case, an inert solvent, tetrachloroethane, was used. Yield is 60%. The products obtained were purified by recrystallisation from 60% acetic acid.

Then compounds **3a-c** were oxidised: the acetyl fragment was oxidised using the haloform reaction method [17]; and the methyl fragment was oxidised using the liquid-phase oxygen oxidation method in the presence of cobalt and manganese acetate catalysts [18]. The oxidation of 4-(3-acetyl-4-methylphenyl)cycloalkyl dicarboxylic acids **3a-c** with oxygen has a low product yield. Apparently, this is due to the influence of the acetyl group on the formation of ion radicals **7, 8** (Scheme 2) in the liquid-phase oxidation reaction. In general terms, the Co³⁺ oxidation reaction can be represented as follows [19]:

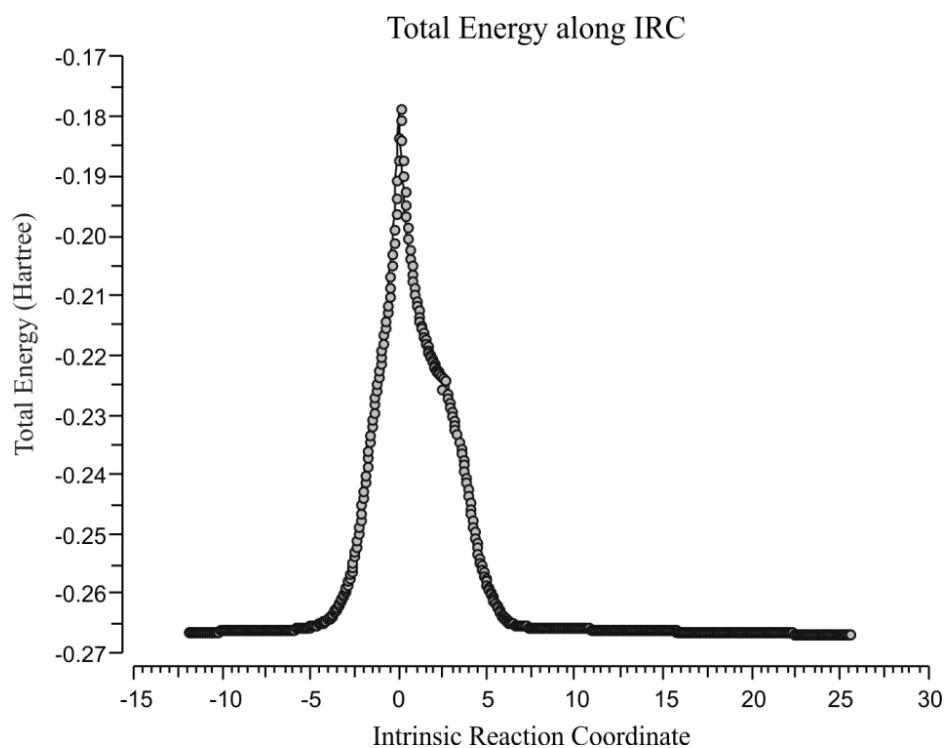
(a): R = none, R₁ = H; (b): R = CH₂, R₁ = H, (c): R = none, R₁ = CH₃

Scheme 2

To confirm this hypothesis, quantum chemical calculations of the energies of the initial, intermediate compounds, and products were performed. The B3LYP electron density functional method [20] was used to calculate the structures, applying the 6-311G(d,p) triple basis set. The molecular structures were optimised; after the thermodynamic parameters for all optimised geometries were sequentially evaluated.

The thermodynamic probability of the oxidation reaction of compounds **3a** and **4a** to compound **6a** was evaluated using quantum chemical methods: calculations of the electronic structures of molecules, energy, molecular structure, thermochemical properties, and energy characteristics of reactions in the ground and excited states [21]. For analysis, we selected heat of formation (ΔH_f , kcal/mol), total energy (E_{tot} , kcal/mol), Gibbs energy (ΔG , kcal/mol), entropy (ΔS , J/(mol·K)). These main characteristics allow us to assess the stability of the compounds formed (Table 1).

Table 1. Thermodynamic characteristics of structures **3-4a, 6a, 7-10** (temperature 298.15 K and pressure 101.325 kPa)


Structure	Total energy E_{tot} , kcal/mol $\cdot 10^3$	Enthalpy of formation ΔH_f , kcal/mol $\cdot 10^3$	Gibbs energy ΔG , kcal/mol $\cdot 10^3$	Entropy ΔS , J/(mol·K)
	-650.099	-649.867	-649.913	152.219
Compound 3a				
	-672.639	-672.421	-672.466	148.614
Compound 4a				
	-671.629	-671.428	-671.474	154.670
Compound 9				
	-649.1	-648.884	-648.93	153.721
Compound 10				
	-766.287	-766.077	-766.125	159.612
Compound 6a				

When comparing the enthalpies of formation of the starting materials, intermediate compounds, and products, the formation of radical **10** is more favourable. The lower enthalpy

for compound **3a** can be interpreted as the possibility of faster product formation and, as a result, higher product yield. These agree with the experimental data.

To confirm the existence of the transition state, internal coordinate reaction (IRC) calculations were performed. It allows us to investigate the configuration of the energy landscape around the transition point [22, 23]. The transition state was characterised by the presence of a single negative eigenvalue of the Hessian matrix only for compound **4a**. However, the corresponding eigenvector clearly reflects the displacement along the reaction coordinate. The transition state was localised using the TS (Transition State) method algorithm [24].

Fig. 1. Procedure for restoring the reaction coordinate using the IRC method of connection **4a**

According to reaction pathways analysis and final structures of the IRC procedure, the reaction is single-stage one and does not involve any intermediates other than weakly bound pre-reaction and post-reaction complexes.

We conducted a study on the effect of reaction time on the yield of oxidation product **6a**. The reaction was conducted at a temperature of 90 °C; a reaction time is 3 hours. Samples were taken every half hour and analysed by HPLC (Table 2).

Table 2. Effect of oxidation reaction time on product **6a** content, %

Reaction time, h	Composition of reaction mixture, %	
	Starting material 3a , %	Reaction product 6a , %
0.5	55	45
1	46	64
2	0.05	99.95
3	0.05	99.95

According to the Table 2, product formation is observed within 30 minutes; the highest yield is achieved within 2 hours.

Conclusions

The method for the synthesis of tetracarboxylic acids containing a cycloaliphatic fragment has been developed. It allows products to be obtained with a high yield of 60%. The probability of obtaining tetracarboxylic acids using a single-reactor method has been demonstrated. Based on quantum chemical methods, calculations were performed and the path and sequence of oxidation reactions of methyl and acyl groups were determined. As a result of studying the oxidation reaction, the highest product yield is observed in 2 hours.

Experimental part

Reaction monitoring and identification of synthesised compounds were performed using thin-layer chromatography (TLC) on Kieselgel-G plates (MerckSi 254F). A mixture of petroleum ether, toluene, acetone, and acetic acid in a ratio of 50:30:50:1 (by volume) was used as the eluent.

Infrared (IR) spectra were recorded on a PerkinElmer Spectrum Two Fourier transform spectrometer using a near-infrared (NIR) probe. The ^1H and ^{13}C NMR spectra were recorded on a Varian UNITY plus 400 MHz instrument at 303 K. All compounds were analysed as 5% solutions in DMSO-d_6 with tetramethylsilane (TMS) as an internal standard. The chemical shifts of ^1H NMR are given relative to the residual signal (δH 2.5 ppm). The chemical shifts of ^{13}C NMR are given relative to the central signal of the solvent (δC 39.5 ppm). The melting temperatures of the compounds were determined using an Electrothermal IA 9300 Series instrument. High-resolution mass spectra were recorded on a Bruker microTOF II device with electrospray ionisation (ESI). Reagents and solvents (Aldrich, Acros) are commercially available and were used without prior purification.

The synthesis methods and physicochemical characteristics of compounds **2a-c** and **6a-c** are described in [17,18].

Synthesis of 4-(3-acetyl-4-methylphenyl)cycloalkyl dicarboxylic acids. General methodology

10 ml of chloroform and 0.5 g (1.81 mmol) of compound **4-6** are loaded into a flask equipped with a refrigerator and a stirrer. Then we add 1 g (7.24 mmol) of aluminium chloride in portions at a temperature of 50 °C, followed by 0.2 ml (2.17 mmol) of acetyl chloride. We stir it for 4 hours at a temperature of 50 °C. The reaction mixture is precipitated in ice water and 5 ml of 36% hydrochloric acid. The precipitate is filtered and dried. The resulting product is purified by crystallisation from an aqueous solution of acetic acid.

Synthesis of 4-(3-acetyl-4-methylphenyl)cycloalkyl dicarboxylic acids. Single-reactor method

10 ml of tetrachloroethane and 0.5 g (2.74 mmol) of compound **1-3** are loaded into a flask equipped with a refrigerator and a stirrer. At a temperature of 50 °C, 1.1 g (8.24 mmol) of aluminium chloride is added in portions and stirred for 2 hours; then 0.36 g (2.74 mmol) of aluminium chloride and 0.2 ml (2.17 mmol) of acetyl chloride are added. We stir it for 2 hours at a temperature of 50 °C. The reaction mixture is precipitated in ice water and 5 ml of 36% hydrochloric acid. The precipitate is filtered and dried. The resulting product is purified by crystallisation from an aqueous solution of acetic acid.

4-(3-Acetyl-4-methylphenyl)cyclohexane-1,2-dicarboxylic acid (3a). Yield is 80%. T_{melt} is 180-182 °C. IR-spectrum, ν/cm^{-1} : 2950, 2856(vCH₂, vCH₃), 2730, 2678, 2542(OH), 1720 (C=O, ketone), 1698 (C=O, acid), 1603 (Ar), 1223, 1209 (C-O), 925 (OH), 880, 816 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.13 (br.s, 2H, COOH), 7.71 (t, J = 8.4 Hz, 2H, Ar), 7.17 (d, J = 8.4 Hz, 1H, Ar), 7.11 (d, J = 8.4 Hz, 3H, C(O)CH₃), 2.72-2.64 (m, 1H, CH), 2.04-1.72 (m, 1H, CH), 2.12-2.10 (m, 2H, CH₂), 1.93-1.89 (m, 1H, CH), 1.64-1.51 (m, 1H, CH), 1.49-1.46 (m, 2H, CH₂), 1.35-1.27 (m, 1H, CH), 1.07-1.05 (m, 3H, CH₃). NMR-spectrum ¹³C (100 MHz, δ , ppm): 175.23, 174.95, 146.82, 138.83, 129.77, 127.81, 127.48, 126.55, 126.45, 124.75, 37.87, 36.55, 36.03, 32.43, 31.59, 23.69, 21.82. Mass-spectrum (EI, 70 eV), m/z (I_{rel}, %): 332 (28), 229 (59), 257 (32), 212 (100), 197 (25), 169 (35), 145 (30), 43 (30). Mass-spectrum (ESI), m/z : found for C₁₇H₂₀O₅: 304.1311, calculated for C₁₇H₂₀O₅: 304.1335.

5-(3-Acetyl-4-methylphenyl)bicyclo[2.2.1]heptane-2,3-dicarboxylic acid (3b) Yield is 81%. T_{melt} is 101-103 °C. IR, ν/cm^{-1} : 2964, 2921, 2882 (vCH₂, vCH₃), 2741, 2688, 2552 (OH), 1717 (C=O, ketone), 1709 (C=O, acid), 1605 (Ar), 1228, 1199 (C-O), 928 (OH), 864, 811 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.03 (br.s, 2H, COOH), 7.16 (t, J = 7.5 Hz, 1H, Ar), 7.09 (d, J = 8.4 Hz, 1H, Ar), 7.06-6.99 (m, 3H, C(O)CH₃), 6.95 (d, J = 7.4 Hz, 1H, Ar), 3.03-2.99 (m, 2H, CH₂), 2.89 (m, 2H, CH₂), 2.42-2.37 (m, 2H, CH₂), 2.06-2.01 (m, 1H, CH), 1.55 (m, 3H, CH₃), 1.38-1.35 (m, 1H, CH), 1.19-1.15 (m, 1H, CH). NMR-spectrum ¹³C (100 MHz, δ , ppm): 174.23, 173.93, 147.02, 137.83, 129.47, 128.81, 128.38, 127.53, 126.75, 124.69, 47.87, 46.55, 46.03, 42.43, 41.59, 37.34, 33.69, 21.82. Mass-spectrum (EI, 70 eV), m/z (I_{rel}, %): 344 (5), 271 (10), 256 (32), 242 (25), 183 (13), 156 (100), 141 (13), 128 (17), 113 (23), 91 (16). Mass-spectrum (ESI), m/z : found for C₁₇H₂₀O₅: 316.1311, calculated for C₁₇H₂₀O₅: 316.1345.

4-(3-Acetyl-4-methylphenyl)-4-methylcyclohexane-1,2-dicarboxylic acid (3c). Yield is 86%. T_{melt} is 125-127°C. IR, ν/cm^{-1} : 2918, 2988 (vCH₂, vCH₃), 2745, 2679, 2547 (OH), 1718 (C=O, ketone), 1705 (C=O, acid), 1605 (Ar), 1223, 1210 (C-O), 945 (OH), 882, 816 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.13 (br.s, 2H, COOH), 7.24-7.20 (m, 2H, Ar), 7.14 (d, J = 7.3 Hz, 3H, C(O)CH₃), 6.98 (d, J = 6.5 Hz, 1H), 2.86 (s, 1H, CH), 2.31-2.27 (m, 2H, CH₂), 2.26-2.27 (m, 2H, CH₂), 2.10-2.07 (m, 2H, CH₂), 1.93-1.91 (m, 3H, CH₃), 1.21-1.18 (m, 1H, CH), 1.09-1.05 (m, 3H, CH₃). NMR-spectrum ¹³C (100 MHz, δ , ppm): 175.61, 175.46, 146.97, 138.17, 135.08, 129.87, 129.15, 126.89, 126.32, 125.43, 123.47, 38.63, 33.85, 31.33, 30.82, 24.82, 22.03, 21.09. Mass-spectrum (EI, 70eV), m/z (I_{rel}, %): 342 (5), 271 (10), 242 (48), 183 (17), 156 (100), 145 (13), 113 (22), 91 (12). Mass-spectrum (ESI), m/z : found for C₁₈H₂₂O₅: 306.1461, calculated for C₁₈H₂₂O₅: 306.1467.

Synthesis of 4-(3-carboxylic-4-methylphenyl)cycloalkyl dicarboxylic acids. General methodology

At the intensive stirring and cooling to 10 °C. 0.2 g (0.6289 mmol) of compound 7-9 is added to a solution of 4 g of caustic soda in 50 ml of water in a three-necked flask equipped with a stirrer, a dropping funnel and a thermometer. Next, we add 0.15 ml (1.887 mmol) of bromine dropwise and stir for 15 minutes at a temperature of 0-5 °C. Then we leave it at room temperature and stir for 1 hour. Next, we heat it to 50-60 °C for 5 hours. Then we separate the resulting bromoform. We add a 5% aqueous solution of sodium thiosulphate to the alkaline

solution and acidify with concentrated hydrochloric acid to a pH of 2-3. The precipitate is filtered and dried.

4-(3-Carboxy-4-methylphenyl)cyclohexane-1,2-dicarboxylic acid (4a). Yield is 81%. $T_{\text{melt.}}$ is 183-185°C. IR, ν/cm^{-1} : 2950, 2925, 2865 (vCH₂, vCH₃), 2655, 2575(OH), 1728 (C=O, ketone), 1697, (C=O, acid), 1606 (Ar), 1250 (C-OH), 931 (OH), 880, 826 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.07 (br.s, 3H, COOH), 7.11 (d, J = 8.3 Hz, 1H, Ar), 7.07 (d, J = 6.7 Hz, 1H, Ar), 6.98 (d, J = 7.4 Hz, 1H, Ar), 2.73-2.69 (m, 1H, CH), 2.49-2.47 (m, 1H, CH), 2.48-2.40 (m, 1H, CH), 2.16-2.07 (m, 2H, CH₂), 1.94-1.88 (m, 3H, CH₃), 1.63-1.58 (m, 1H, CH), 1.53-1.49 (m, 2H, CH₂), 1.37-1.34 (m, 1H, CH), 1.20 (d, J = 5.5 Hz, 2H, CH₂). NMR-spectrum ¹³C (100 MHz, δ , ppm): 175.23, 174.95, 174.85, 130.78, 129.81, 127.83, 126.45, 125.45, 124.83, 37.87, 36.55, 36.03, 32.43, 31.59, 23.69, 21.82. Mass-spectrum (EI, 70 eV), m/z (I_{rel}, %): 348 (8), 304 (17), 272 (41), 244 (48), 229 (43), 212 (21), 185 (61), 169 (90), 132 (100), 105 (40), 91 (38), 59 (12), 41 (7). Mass-spectrum (ESI), m/z : found for C₁₆H₁₈O₆: 306.1103, calculated for C₁₆H₁₈O₆: 306.1145.

5-(3-carboxy-4-methylphenyl)bicyclo[2.2.1]heptane-2,3-dicarboxylic acid (4b). Yield is 83%. $T_{\text{melt.}}$ is 141-143°C. IR, ν/cm^{-1} : 2965, 2935, 2885 (vCH₂, vCH₃), 2675, 2585, (OH), 1701, 1684 (C=O, acid), 1605 (Ar), 1250 (C-OH), 935(OH), 886, 816 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.01 (br.s., 3H, COOH), 7.15 (d, J = 8.4 Hz, 1H, Ar), 7.09 (d, J = 6.4 Hz, 1H, Ar), 6.95 (d, J = 7.4 Hz, 1H, Ar), 3.06-2.99 (m, 2H, CH₂), 2.91-2.87 (m, 1H, CH), 2.44-2.36 (m, 2H, CH₂), 2.25 (s, 1H, CH), 2.67-2.07 (m, 1H, CH), 1.37-1.33 (m, 1H, CH), 1.21-1.15 (m, 1H, CH, CH). NMR-spectrum ¹³C (100 MHz, δ , ppm): 174.23, 173.93, 173.55, 132.38, 130.47, 129.82, 128.42, 127.33, 126.65, 47.74, 46.75, 46.13, 42.33, 41.69, 37.44, 33.71, 22.82. Mass-spectrum (ESI), m/z : found for C₁₇H₁₈O₆: 318.1110, calculated for C₁₇H₁₈O₆: 318.1103.

4-(3-carboxy-4-methylphenyl)-4-methylcyclohexane-1,2-dicarboxylic acid (4c). Yield is 75%. $T_{\text{melt.}}$ 147-149°C. IR, ν/cm^{-1} : 2950, 2932, 2886 (vCH₂, vCH₃), 2665, 2577 (OH), 1707 (C=O, acid), 1601 (Ar), 1250 (C-OH), 932 (OH), 880, 832 (1,2,4-substitution). NMR-spectrum ¹H (DMSO-d6, δ , ppm, J/Hz): 12.09 (br.s., 3H, COOH), 7.21 (d, J = 6.2 Hz, 1H, Ar), 7.16-7.05 (m, 2H, Ar), 2.84 (s, 1H, CH), 2.26-2.20 (m, 3H, CH₃), 2.16-2.05 (m, 2H, CH₂), 2.04-1.92 (m, 2H, CH₂), 1.54-1.49 (m, 2H, CH₂), 1.33-1.27 (m, 1H, CH), 1.25-1.21 (m, 1H, CH), 1.07-1.01 (m, 2H, CH₂). NMR-spectrum ¹³C (100 MHz, δ , ppm): 175.61, 175.46, 174.76, 138.15, 136.18, 135.87, 129.25, 127.19, 126.34, 124.46, 38.73, 34.95, 31.23, 30.85, 24.85, 22.15, 21.29. Mass-spectrum (ESI), m/z : found for C₁₇H₂₀O₆: 320.1268, calculated for C₁₇H₂₀O₆: 320.1260.

References

1. Mi M.-C., Szu F.-E., Cheng Y.-C., Tsai C.-H., Chen J.-H., Huang, J.-H. Kuo, C.-C., Lin Y.-C., Leung M.-K., Chen W.-C. Semi-aromatic copolymers of poly (ether imide) with alicyclic diamines for obtaining low-oxidation properties at a high frequency of 10-40 GHz. *Appl. Polym. Mater.*, 2024, 6(18), 11137-11148. DOI: 10.1021/acsapm.4c01405
2. Sachs J.D., Tonks I.A. Synthesis of poly(ether-ether) polymers by hydroesterification polymerization of α,ω -enol esters. *Macromolecules*, 2022, 55(21), 9520-9526. DOI: 10.1021/acs.macromol.2c01935
3. Wang D.H., Lee K.M., Lee D.H., Bachkowski M., Park H., MccOnnie M.E., Tan L.-S. The role of alicyclic conformational isomerization in the photomechanical characteristics of crosslinked polyimides with

azobenzene functional groups containing tetrasubstituted cyclohexane fragments. *ACS Macro Letters*, 2021, 10(2), 278–283. DOI: 10.1021/acsmacrolett.0c00903

- 4. **Hosseini N.E., van Melis K.G.V., Vermeer T.J., Koning K.E., Duchateau R.** Polymerization of cyclohexenoxide and anhydrides with alternating cycle opening: the effect of the catalyst, co-catalyst, and anhydride structure. *Macromolecules*, 2012, 45(4), 1770-1776. DOI: 10.1021/ma2025804
- 5. **Nagura M., Sakurazawa M., Suzuki R.** Pat.US № 2015346390, 2015.
- 6. **Hatanaka T., Adachi I.** Pat. KR № 20120000104, 2012.
- 7. **Nakahata M.** Pat. JP № 2011142393, 2011
- 8. **Yang A., Xu C.** Synthesis and Characterization of a Polyimide-Epoxy Composite for Dental Applications. *Mech. Compos. Mater.*, 2018, 54(1), 71–78. DOI:10.1007/s11029-018-9719-7.
- 9. **Li H.T., Lin M.S., Chuang H.R. Wang, M.-W.** Siloxane- and Imide-modified Epoxy Resin Cured with Siloxane-containing Dianhydride. *J. Polym. Res.*, 2005, 12(5), 385–391. DOI: 10.1007/s10965-005-1766-9
- 10. **Tachibana Y., Tsutsuba T., Sakata Ms., Kasuya K.-I.** Disubstituted cyclohexane monomers as biodegradable building block: Evaluation of biodegradability of polyesters containing cyclohexane ring. *Polym. Degrad. Stab.*, 2023, 217, 110516. DOI: 10.1016/j.polymdegradstab.2023.110516.
- 11. **Unoh Y., Satoh T., Hirano K., Miura M.** Rhodium(III)-Catalyzed Direct Coupling of Arylphosphine Derivatives with Heterobicyclic Alkenes: A Concise Route to Biarylphosphines and Dibenzophosphole Derivatives. *ACS Catalysis*, 2015, 5, 6634–6639. DOI:10.1021/acscatal.5b01896
- 12. **Madan S., Cheng C.H.** Nickel-catalyzed synthesis of benzocoumarins: application to the total synthesis of arnottin I. *J. Org. Chem.*, 2006, 71(21), 8312-5. DOI: 10.1021/jo061477h.
- 13. **Adak L., Jin M., Saito S., Kawabata T., Itoh T., Ito S., Sharma A.K., Gower N.J., Cogswell P., Geldsetzer J., Takaya H., Isozaki K., Nakamura M.** Iron-catalysed enantioselective carbometalation of azabicycloalkenes. *ChemCommun (Camb)*, 2021, 57(57), 6975-6978. DOI: 10.1039/d1cc02387j
- 14. **Boon-Hong T.** Cobalt-Catalyzed Addition of Arylzinc Reagents to Norbornene Derivatives through 1,4-Cobalt Migration. *Org.Lett.*, 2014, 16(12), 3392–3393. DOI: 10.1021/ol501449j
- 15. **Lin Q., Yang W., Yao Y., Chen S., Tan Y., Chen D., Yang D.** Copper-Catalyzed Diastereoselective 1,2-Difunctionalization of Oxabenzonorbornadienes Leading to β -Thiocyanato Thioethers. *Org Lett.*, 2019, 21(18), 7244-7247. DOI: 10.1021/acs.orglett.9b02452.
- 16. **Magnus R.A.** Review of new developments in the Friedel-Crafts alkylation – From green chemistry to asymmetric catalysis. *BeilsteinJ.Org. Chem.*, 2010, 6(6), 6–11. DOI: 10.3762/bjoc.6.6
- 17. **Firstova A.A., KofanovE.R., Krasovskaya G.G., Danilova A.S.** Simple and efficient synthesis of new tricarboxylic acids bearing cyclohexane and norbornane fragments. *Russ. Chem. Bull.*, 2017, 66, 867–869. DOI: 10.1007/s11172-017-1820-x
- 18. **Firstova A.A., Kofanov E.R.** Synthesis of Phenylcycloalkanopolycarboxylic Acids. *Russ. J. Org. Chem.*, 2023, 59, 820–825 DOI: 10.31857/S0514749223050129
- 19. **Kamiya Y., Kashima M.** The autoxidation of aromatic hydrocarbons catalyzed with cobaltic acetate in acetic acid solution: I. The oxidation of toluene. *J. Catal.*, 1972, 25(3), 326-333. DOI:10.1016/0021-9517(72)90234-5
- 20. **Becke A.D.** A new mixing of Hartree-Fock and local density-functional theories. *J. Chem. Phys.*, 1993, 98, 1372-1377. DOI:10.1063/1.464304
- 21. **Flurry R.L.** Quantum chemistry: An introduction. NJ: Prentice-Hall, Inc., 1983. 399pp.
- 22. **Parr R.G., Szentpalyand L.V., Liu S.** Electrophilicity Index. *J. Am. Chem. Soc.*, 1999, 121, 1922. DOI: 10.1021/ja983494x
- 23. **Ignatov S.K.** Kvantovo-khimicheskoye modelirovaniye atomno-molekulyarnykh protsessov. Nizhniy Novgorod: NGU im. N. I. Lobachevskogo, 2019, 93 s. (in Russian).
- 24. **Plekhovich S.D., Zelentsov S.V.** Raschet perekhodnykh sostoyaniy metodami kvantovoy khimii. Uchebno-metodicheskoye posobiye. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet, 2015, 21 s. (in Russian).

Received 20.11.2025

Approved after reviewing 09.12.2025

Accepted 20.12.2025