Научная статья УДК 541.49:547-386 DOI: 10.52957/2782-1900-2024-5-3-8-22

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ЖЕЛЕЗА(III) С ТSC

Т. Б. Бобокалонов, С. М. Сафармамадзода

Тоджиддин Баротмахмадович Бобокалонов, канд. хим. наук, старший преподаватель, **Сафармамад Муборакшо Сафармамадзода**, д-р хим. наук, профессор.

Таджикский национальный университет, Душанбе, Республика Таджикистан,

sash65@mail.ru, tojiddin_8989@mail.ru.

Ключевые слова:	Аннотация. Разработаны методики синтеза координационных
комплексообразование,	соединений железа(III) с тиосемикарбазидом (TSC). Методами
синтез, железо(III),	ИК-спектроскопии, кондуктометрии, рентгенографии и
тиосемикароазио (ТSC),	термогравиметрии ооказано их строение. Установлено, что 150 с
ИК-спектроскопия,	железом(III) координируется бидентатно посредством атома серы и
кондуктометрия,	азота. Термогравиметрически установлено, что разложения комплексов
рентгенография,	протекает в две стадии: на первой стадии происходит термолиз
термолиз	органических лигандов с образованием соответствующих солей железа,
	железа(III). Кондуктометрически установлено, что синтезированные
	комплексы относятся к сильным электролитам. Рентгенографически
	показано, что комплексы кристаллизуются в орторомбические сингонии.
	Число структурных единиц в ячейке равно двум.

Для цитирования:

Бобокалонов Т.Б., Сафармамадзода С.М. Синтез и физико-химические исследования комплексных соединений железа(III) с TSC // От химии к технологии шаг за шагом. 2024. Т. 5, вып. 3. С. 8-22 URL: https://chemintech.ru/ru/nauka/issue/5357/view

Введение

На протяжении многих лет тиосемикарбазиды представляют значительный интерес для синтетической органической химии. Благодаря наличию нескольких активных реакционных центров они широко используются для синтеза азот- и серосодержащих гетероциклических соединений. Способность тиосемикарбазида образовывать комплексы с катионами железа, цинка, меди, никеля и других металлов, играющих важную роль в биологических процессах, обусловливает широкий спектр биологической активности его производных. Среди них найдены вещества с противоопухолевым, антимикробным, противопаразитарным, инсектицидным, антиоксидантным и антиатеросклеротическим действием [1]. Железо является необходимым микроэлементом для обеспечения большинства жизненно важных

[©] Т. Б. Бобокалонов, С. М. Сафармамадзода, 2024

функций живых организмов, таких как транспорт кислорода, синтез ДНК, участие в эффекторных механизмах иммунитета и др. Микроорганизмы также нуждаются в железе. Потребляя из окружающей среды железо, бактерии приобретают способность лучше противостоять неблагоприятным факторам, получают преимущество в конкурентной борьбе. Исследования широкого спектра патогенных бактерий свидетельствуют, что экспрессия многих генов, отвечающих за патогенность, регулируется железом [2].

В обзорной статье [3] систематизированы данные по синтезу, строению, комплексных соединений некоторых переходных устойчивости металлов С тиосемикарбазидом и его производными. Рентгеноструктурными И ИК-спектроскопическими исследованиями установлен способ координации тиосемикарбазидов и определены структуры комплексов. В частности показано, что тиосемикарбазид с Cu(II), Zn(II), Fe(II), Ni(II) и Ag(I) координирует бидентатно посредством атома серы и азота гидразинового фрагмента. В работе [4] синтезированы и изучены комплексные соединения рения(V) с тиосемикарбазидом. Установлено, что TSC с рением(V) координирует бидентатно по атому серы и азота. Авторы [4, 5] при условиях синтезировали комплексные соединения рения(V) идентичных 4-метилтиосемикарбазидом (4MTSC). Идентификация комплексов методами ИК и ПМР-спектроскопии показала, что 4MTSC координирует с рением(V) монодентатно посредством атома серы. Изменение дентатносты молекулы 4MTSC авторы работ объясняют стерическими факторами, создаваемыми метильной группой.

В работе [6] методом окислительного потенциала Кларка-Никольского изучены процессы комплексообразования в системе Fe(II)-Fe(III)-глицин-Na(H)ClO₄-H₂O. Получены экспериментальные кривые зависимости ЭДС системы от концентрационных параметров: pH, pC_{Fe(III}), pCL. Показано, что в зависимости от pH-раствора в системе Fe(II)-Fe(III)-глицин-Na(H)ClO₄-H₂O образуются комплексные соединения Fe(III) состава: $[FeHL(H_2O)_5]^{3+}$, $[Fe(HL)_2(H_2O)_4]^{3+}$, $[Fe_2(HL)_2(OH)_2(H_2O)_8]^{4+}$, $[Fe^{III}Fe^{II}(HL)_2(OH)_2(H_2O)_8]^{3+}$, a также Fe(II): $[Fe(HL)(H_2O)_5]^{2+}$, $[Fe(HL)(OH)((H_2O)_4]^{+}$, [Fe^IFe^{III}(HL)₂(OH)₂(H₂O)₈]³⁺. В [7] обсуждаются условия синтеза комплексов ацетата Co(II) с меламином и глицином на основе современных физико-химических методов исследования. Авторы работы [8] изучали конденсацию 2-аминопиридин-3карбальдегида с 1-гидразинофталазином. Получили новый гетарилгидразон и исследовали его комплексообразующую способность по отношению к ионам Ni²⁺, Cu⁺, Си²⁺, Zn²⁺ и Со³⁺. Показано, что в зависимости от природы ионов металла и кислотного остатка образуются комплексные соединения различного состава и строения.

В работе [9] получены комплексы меди(II), содержащие ряд салицилальдегидсемикарбазоновых лигандов. Полученные комплексы охарактеризованы физикохимическими методами. Рентгеновская структура [Cu(HBnz₂)Cl]·H₂O показывает, что комплекс является мономерным, а атом меди четырехкоординирован в искаженной плоско-квадратной геометрии. Лиганд хелатирует медь тридентатно через имин(N), карбонил(O) и фенолато(O), причем четвертое положение занимает координированный Cl. Соединение [Cu(Ph₂)·H₂O] также формулируется как мономер.

Авторы работы [10] исследовали процесс комплексообразования золота(III) с 2-этилимидазолом в растворе. Для определения количества образующих комплексов

9

строили зависимости ΔE от lgC_L. Определены общие константы устойчивости комплексов состава [Au(2-ЭИ)Cl₃] и [Au(2-ЭИ)₂Cl₂]Cl. Показано, что при увеличении температуры устойчивость комплексов возрастает. Температурный фактор в большей степени влияет на устойчивость бизамещённого комплекса. Авторы работы [11] синтезировали и изучали физико-химические свойства комплексных соединений золота(III) с 1,2,4-триазолом, 1,2,3-бензтриазолом и 1-фурфурилиденамино-1,3,4триазолом. ИК-спектроскопическим методом установлено, что молекулы 1,2,4-триазола, 1,2,3-бензтриазола 1-фурфурилиденамино-1,3,4-триазола координируются И золотом(III) посредством атома азота триазольного кольца. Установлено, что монозамещённые комплексы золота(III) в диметилформамиде до температуры 35 °С ведут себя как соединения неэлектролитного типа, а выше этой температуры происходит замещение внутрисферных хлоридных ионов на молекулу ДМФА с образованием новых комплексов электролитного типа. Рентгенографически установлено, что комплексы золота(III) с 1,2,3-бензтриазолом являются гранецентрированным с центром в узлах и середине базисной плоскости решетки, которым соответствует число структурных единиц, равное четырем.

Цель работы

Разработка оптимальных методик синтеза комплексов железа(III) с тиосемикарбазидом, изучение их важнейших физико-химических свойств, установление способа координации Fe(III) с TSC.

Основная часть

Наличие определённого числа работ, посвящённых синтезу и установлению способа координации тиосемикарбазида и его производных к ионам металлов, свидетельствуют о том, что на способ координации этого класса лигандов влияет природа растворителя, pH раствора и наличие заместителя, обладающего донорными свойствами. Комплексные соединения железа(III) с TSC нами получены из сернокислых растворов (pH<1) при разных соотношениях исходных компонентов. Данные элементного анализа дали возможность установить, что железо(III) с TSC образует комплексы, в которых на один атом металла приходятся две и три молекулы TSC, и их образование протекает по реакциям:

 $Fe_2(SO_4)_3 + 4TSC \rightarrow ([Fe(TSC)_2SO_4])_2SO_4$ $Fe_2(SO_4)_3 + 6TSC \rightarrow ([Fe(TSC)_3])_2(SO_4)_3$

Оба комплекса, по данным химического анализа, содержат сульфатные ионы. Для установления способа координации TSC и сульфат ионов к железу(III) регистрировали и сопоставили ИК-спектры исходных соединений и синтезированных комплексов. В работах [3, 12, 13] интерпретированы и отнесены частоты колебания в ИК-спектре TSC и его комплексов с некоторыми переходными металлами. Для установления способа координации TSC к железу(III) нами были использованы данные этих работ. В таблице 1 приведены характеристические частоты инфракрасного поглощения TSC, сульфата железа и комплексов железа(III) с TSC при 400–4000 см⁻¹.

	Характеристические частоты, см				
Отнесение	TSC	$([Fe(TSC)_2SO_4])_2SO_4$	$([Fe(TSC)_3])_2(SO_4)_3$	$Fe_2(SO_4)_3 \cdot 9H_2O$	
	3367cp.	3396сл.	3396сл.	-	
(NILI)	3263cp.	3279сл., 3261сл., 3258сл. 3300сл., 3275сл., 3264сл		-	
V(INTI)	3176c.	3170cp. 3188c.		-	
	2972сл.	2970сл. 2970сл.		-	
\$(NILI)	1645c.	1635c.	1649c.	-	
$O(IN\Pi_2)$	1620c.	1612c.	1612c.	-	
S(NUI) LU(CNI)	1533c.	1559cp.	1556cp.	-	
$O(N\Pi) + V(CN)$	1508оч.сл.	1508оч.сл.	1508оч.сл.	-	
ν(CN)+δ(NH) 1485сл., 1458оч.сл.		1438ср., 1400сл.	1440ср., 1400ср.	-	
Amide III	1317cp.	1355cp.	1355cp.	-	
Amide III	1287cp.	1203сл.	1200сл.	-	
ῥ(NH ₂)	1165cp.	1120cp.	1120c.	-	
$\begin{array}{c c} \omega(\mathrm{NH}_2) & & \\ \nu(\mathrm{NN}) & & 1001\mathrm{c.} \end{array}$		-	-		
v(CS)	800c.	694cp.	694cp.	-	
		1080оч.с.	1099оч.с.	1186c., 1117c., 1063c.,1015c.	

Таблица 1. Характеристические частоты инфракрасного поглощения TSC, сульфат железа и комплексов Fe(III)

ИК-спектр TSC (N^aH₂N^bHC^cSN^dH₂) в области 2900-3500 см⁻¹ имеет четыре полосы поглощения разной интенсивности (см. табл. 1), которые относятся к валентным колебаниям v(N^dH₂)-3367 см⁻¹; v(N^aH₂)-3263 см⁻¹, v(N^bH)-3176 см⁻¹ и v(NH)-2972 см⁻¹ соответственно [12]. Вышеуказанные полосы в спектрах комплексов состава ([Fe(TSC)₂SO₄])₂SO₄ и ([Fe(TSC)₃])₂(SO₄)₃ проявляют себя по-разному. Так, полоса v(N^bH)-3176 см⁻¹ в ИК-спектре комплекса ([Fe(TSC)₃])₂(SO₄)₃, претерпевая небольшие изменения, проявляется при 3188 см⁻¹. Полоса, ответственная за v(N^dH₂)-3367 см⁻¹ в спектре комплекса состава ($[Fe(TSC)_3]$)₂(SO_4)₃, претерпевая высокочастотное смещение, проявляется при 3396 см⁻¹. Что касается полосы v(N^aH₂)-3263 см⁻¹, то она в спектрах комплексов расщепляется на несколько полос с малой интенсивностью (например, в ИК-спектре ([Fe(TSC)₃])₂(SO₄)₃ обнаружены три полосы малой интенсивности при 3300, 3275 и 3264 см⁻¹ соответственно). Полоса TSC, проявляющаяся при 2972 см⁻¹, в спектрах комплексов претерпевает незначительное изменение. В ИК-спектре TSC в области 1700-1600 см⁻¹ проявляются две полосы сильной интенсивности при 1645 и 1620 см⁻¹. В ИК-спектре комплексов (см. табл. 1) происходит незначительное низкочастотное смещение полосы, проявляющейся в спектре TSC при 1620 см⁻¹. Полоса TSC при 1645 см⁻¹ в спектрах комплексов расщепляется и проявляется в виде двух полос сильной интенсивности (см. табл. 1). Наблюдаемые изменения в характере проявления полос поглощения, относящихся к валентным и деформационным колебаниям NH групп, связаны с координацией, скорее всего, атома азота гидразинового фрагмента молекулы ТSC к железу(III).

Участие атома азота молекулы TSC в координации подтверждается также изменением частоты проявления полос, относящихся к валентным и деформационным

колебаниям NH-, CN- и NN-групп в спектрах комплексов, по сравнению с некоординированным TSC. Так, полоса, относящаяся к «AmideIII» (см. табл. 1) в ИК-спектре комплексов, претерпевает сильное низкочастотное смещение и проявляется для ([Fe(TSC)₂SO₄])₂SO₄ при 1203 см⁻¹, а в спектре([Fe(TSC)₃])₂(SO₄)₃ – при 1200 см⁻¹. Очень интенсивная полоса в спектре TSC проявляется при 1001 см⁻¹. В эту полосу по данным работы [3] основной вклад вносят ω (NH₂)- и ν (NN)-группы. Эта полоса в спектрах комплексов нами не обнаружена, т.е. она исчезает.

Многие исследователи [3-5, 12, 13] полосу, проявляющуюся в ИК-спектре TSC при 800–805 см⁻¹, относят к колебаниям v(CS)-группы. Эта полоса в ИК-спектрах синтезированных комплексов, в отличие от TSC, претерпевает очень сильное низкочастотное смещение и проявляется в спектрах синтезированных комплексов при 694 см⁻¹ (см. табл. 1). Полученный экспериментальный факт является весомым доказательством участия атома серы молекулы TSC в координации с железом(III).

Доказательством существования сульфатного иона в составе комплексов является проявление полос, характерных для этого иона в ИК-спектрах комплексов. На рис. 1 и 2 приведены ИК-спектры Fe₂(SO₄)₃·9H₂O и ([Fe(TSC)₃])₂(SO₄)₃.

Рис. 1. ИК-спектр Fe₂(SO₄)₃·9H₂O

Рис. 2. ИК-спектр комплекса ([Fe(TSC)₃])₂(SO₄)₃

В ИК-спектре Fe₂(SO₄)₃·9H₂O при 3200 и 1614 см⁻¹ проявляются полосы, относящиеся к валентным и деформационным колебаниям гидроксильной группы молекулы воды. Эти полосы в ИК-спектрах ([Fe(TSC)₂SO₄])₂SO₄ и ([Fe(TSC)₃])₂(SO₄)₃ интерпретировать не удалось, так как в этих областях проявляется несколько интенсивных полос самого органического лиганда.

Для сульфатного иона по данным работы [14] характерны частоты колебания при v_1 (983 см⁻¹), v_2 (450 см⁻¹), v_3 (1105 см⁻¹) и v_4 (611 см⁻¹). В ИК-спектрах ([Fe(TSC)₂SO₄])₂SO₄ и ([Fe(TSC)₃])₂(SO₄)₃, в отличие от спектра TSC при 980 см⁻¹, проявляется полоса слабой интенсивности, которая, скорее всего, относится к v_1 (983 см⁻¹) сульфатного иона. ИК-спектр Fe₂(SO₄)₃·9H₂O в области 1000-1200 см⁻¹ характеризуется набором чередующихся полос (см. рис. 1), которые, по данным [15], можно отнести к v_3 сульфатных ионов, один из которых является мостиком между атомами железа. В ИК-спектре ([Fe(TSC)₂SO₄])₂SO₄ в этой области проявляются две полосы, сильная при 1080 см⁻¹ и средняя при 1120 см⁻¹. Эти полосы отсутствуют в спектре TSC. Характер проявления полос, относящихся к v_3 (SO₄) в спектре комплекса даёт основание предположить, что из двух сульфатных ионов один находится во внутренней сфере комплекса. ИК-спектр комплекса состава ([Fe(TSC)₃])₂(SO₄)₃ при 1000–1200 см⁻¹ характеризуются четырьмя полосами (1059, 1072, 1116 и 1126 см⁻¹), что однозначно свидетельствует о наличии сульфатных ионов в составе комплекса.

Таким образом, на основании проведённых ИК-спектроскопических исследований установлено, что синтезированные комплексы содержат полосы, характерные для железа(III), TSC и сульфат-ионов. Показано, что TSC координирует с железом(III) бидентатно посредством атомов серы и азота гидразинового фрагмента.

Проведённые термогравиметрические исследования показали, что процесс термического разложения комплексов отличается существенным образом от терморазложения исходных соединений. В отличие от $Fe_2(SO_4)_3$.9H₂O, синтезированные тиосемикарбазидные комплексы железа(III) не содержат молекулы кристаллизационной воды. Термограммы комплексов также не содержат эффекты, характерные для плавления органических лигандов. Так, термогравиграмма комплекса состава ([Fe(TSC)₂SO₄])₂SO₄ по кривой TG до 185 °C характеризуется неизменностью массы (рис. 3).

На кривой DTA в этой области температур также никаких эффектов не наблюдается, хотя температура плавления TSC равна 183 °C. Начиная от температуры 200 °C и заканчивая температурой 320 °C, кривая DTA комплекса характеризуется чередующимися экзо- и эндоэффектами. Потеря массы по кривой TG для экзоэффекта равна 2% от массы навески, а для эндоэффекта 11%. Для того, чтобы точно определить, какое изменение претерпевает комплекс в этой области температур, опираясь на данные термограммы комплекса, нами были поставлены опыты с бо́льшей навеской комплекса. Для этого 0,5 г комплекса в изотермических условиях было выдержано до постоянной массы при температуре 320 °C в термошкафу. В результате цвет комплекса становится светло коричневым, а потеря массы составляет 12% от массы навески. Прогретый при 320 °C комплекс был проанализирован на содержание соответствующих элементов, которые оказались равными: Fe=18,9%; N=14,5%; S=27,2%; C=4,22%; H=1,77%.

Рис. 3. Термограмма комплекса состава ([Fe(TSC)₂SO₄])₂SO₄

Учитывая потерю массы комплекса, по данным термограммы, а также процент потери массы комплекса при нагревании в термошкафу и данные элементного анализа, можно предположить, что в области температур 200–320 °С происходит разложение и удаление одной молекулы тиосемикарбазида из состава комплекса по уравнению:

 $([Fe(TSC)_2SO_4])_2SO_4 \rightarrow ([FeTSCSO_4])_2SO_4 + (NH_2CSNH_2)_2 + N_2H_4$

Область температур 320-530 °C для комплекса характеризуется неизменностью массы. В этой области температур на кривой DTA также никаких эффектов не наблюдается. Начиная от 550 °С, комплекс резко теряет свою массу, и этот процесс заканчивается при температуре 740 °С. В этой области температур на кривой DTA наблюдается один эндоэффект. Процент потери массы по кривой TG в этой области температур составляет 84% от массы навески. Для того чтобы охарактеризовать продукт реакции, который образуется в результате терморазложения в области температур 550-740 °C, исходный комплекс массой 0,556 г был выдержан до постоянной массы в термошкафу при температуре 750 °С. Процент потери массы комплекса при этом составил 81%. Подвергнутая элементному анализу навеска после разложения в термошкафу содержала 68% Fe. Из полученных экспериментальных данных мы пришли к заключению, что в области температур 550-740 °С происходит полное разложение комплекса. При ЭТОМ ИЗ состава комплекса сначала удаляется молекула тиосемикарбазида, а затем происходит разложение сульфата железа(III) с образованием оксида железа(III) по уравнению:

$$([FeTSCSO_4])_2SO_4 \rightarrow Fe_2O_3 + 3SO_3 + (NH_2CSNH)_2 + N_2H_4$$

Термограмма комплекса, содержащего три молекулы TSC, которому соответствуют состав ([Fe(TSC)₃])₂(SO₄)₃, (рис. 4) отличается от термограммы двухзамещённого комплекса (разложение которого рассмотрено выше) тем, что на термограмме первого все потери массы характеризуются экзоэффектами.

Рис. 4. Термограмма комплексов состава ($[Fe(TSC)_3]$)₂(SO_4)₃

Термограмма ([Fe(TSC)₃])₂(SO₄)₃ до 190 °C по кривой TG характеризуется неизменностью массы. На кривой DTA комплекса в этой области температур также никаких эффектов не наблюдается. Начиная с 200 и заканчивая 280 °C, комплекс теряет 6% от общей массы. Опираясь на данные термогравиметрии, нами был поставлен опыт с бо́льшей навеской комплекса для более точного установления характера терморазложения. Прогретый при изотермических условиях 0,655 г комплекс меняет свой цвет от светло жёлтого до пепельного. Процент потери массы образца после нагревания составлял 6,9% от массы навески. Данные элементного анализа были следующими: Fe=14,9%; N=21,6%; S=28,8%; C=6,22%; H=2,77%.

Учитывая данные элементного анализа, процент потери массы комплекса и экзоэффект на термограмме можно предположить, что в этой области температур происходит разложение одной моли лиганда в составе комплекса и её удаление по уравнению

$$([Fe(TSC)_3SO_4])_2SO_4 \rightarrow ([Fe(TSC)_2SO_4])_2SO_4 + (NH_2CSNH)_2 + N_2H_4$$

Начиная с 320 и заканчивая 660 °С, на термограмме комплекса наблюдаются три экзоэффекта. Первый экзоэффект приходится на температуру 380 °С, а второй и третий – на 420 и 460 °С. Для этих экзоэффектов потеря массы на кривой TG непрерывная и нет чётких разграничений. Потеря массы комплекса в области температур 320–660 °С составляет 65% от общей массы навески. Прогретый нами в изотермических условиях комплекс становится красно-коричневого цвета. Элементный анализ прогретого образца показал, что вещество состоит на 63% из железа.

Учитывая данные элементного анализа, процент потери массы образца при нагревании можно предположить, что в области температур 320–660 °С происходит в начале разложение органических лигандов в составе комплекса, их удаление, а затем и разложение сульфата железа(III) по уравнению

 $([Fe(TSC)_2SO_4])_2SO_4 \rightarrow Fe_2O_3 + 3SO_3 + 2[NH_2CSNH]_2 + 2N_2H_4$

Выше температуры 650 °С термограмма комплекса характеризуется эндоэффектом на кривой DTA, однако потеря массы комплекса по кривой TG не наблюдается. Эндоэффект без потери массы, скорее всего, связан с фазовыми переходами Fe₂O₃.

Кондуктометрический метод является одним из точных и удобных методов исследования свойств и состава координационных соединений. Ограничением к применению этого метода в координационной химии, во-первых, является то, что в водных растворах большинство комплексных соединений подвергаются гидролизу (при этом изменяется состав комплексов), во-вторых, комплексные соединения, содержащие в своём составе сложные органические молекулы, плохо растворяются как в воде, так и в органических растворителях и, в-третьих, на сегодняшний день пределы проводимости электролитов разного типа определены только для ограниченного числа растворителей. С этими трудностями пришлось столкнуться при исследовании электрической проводимости комплексов железа(III) с тиосемикарбазидом и его ацилпроизводным. В органических растворителях, для которых определен предел проводимости, синтезированные комплексы не растворяются. Эти соединения плохо растворяются и в воде. Однако нам удалось при нагревании приготовить растворы синтезированных комплексных соединений с концентрацией менее чем 0,0014 моль/л в воде.

В таблице 2 приведены значения температурной зависимости молярной электрической проводимости комплексов железа(III) с тиосемикарбазидом в воде.

Таблица 2. Данные температурной зависимости молярной электрической проводимости водных растворов синтезированных комплексов, *C*=1,4·10⁻³ моль/л

N⁰	Vorumer of coordinating	μ,Ом⁻¹·см²·моль⁻¹				
п/п	комплексные соединения	293 K	298 K	303 K	308 K	313 K
1	([Fe(TSC) ₂ SO ₄]) ₂ SO ₄	279	292	331	362	397
2	$([Fe(TSC)_3])_2(SO_4)_3$	587	648	712	732	760

Анализ данных таблицы показывает, что с возрастанием температуры электрическая проводимость всех синтезированных комплексов возрастает, что соответствует теории электропроводности об увеличении подвижности ионов при возрастании температуры. Если сравнить значения таблицы (температура 298 К) с литературными данными [16], то возможно определить тип электролита, к которым относятся синтезированные комплексы. Сульфатный комплекс железа(III), содержащий две молекулы TSC, относится к электролитам 2:1, а комплекс, содержащий три молекулы TSC, имеет проводимость, характерную электролитам, диссоциирующим с образованием пяти ионов.

Энергия активации электропроводности является количественной характеристикой подвижности ионов в растворе. Для расчёта энергии активации достаточно иметь экспериментальные данные температурной зависимости молярной электропроводности, которыми мы располагаем (см. табл. 2). Энергию активации из данных выше указанной таблицы можно рассчитать как аналитическим, так и графическим способом. Мы остановились на графическом способе определения энергии активации с использованием уравнения $lg \mu = -\frac{2.3E_A}{R}\frac{1}{T}$, который рекомендован в работе [17].

Энергию активации определяли из зависимости lgµ = f(1/T) (рис. 5) для чего находили tgα прямых, а затем рассчитывали энергию активации из уравнения tgα = $-\frac{E_{\lambda}R}{2.3}$.

Рис. 5. Зависимость lgµ = f(1/T) для комплексных соединений состава: 1– ([Fe(TSC)₂SO₄])₂SO₄; 2 – ([Fe(TSC)₃])₂(SO₄)₃

В таблице 3 приведены значения энергии активации электропроводности синтезированных комплексов в воде.

Таблица 3. Энергия активации синтезированных комплексов железа(III) с тиосемикарбазидом

№ п/п	Соединение	-tga	<i>Е_{акт}, кал/моль</i>
1	$([Fe(TSC)_2SO_4])_2SO_4$	732,18	2646,67
2	$([Fe(TSC)_3])_2(SO_4)_3$	510,97	1847,05

Из данных таблицы 3 видно, что энергия активации имеет минимальное значение для комплекса, который диссоциирует с образованием пяти ионов.

В таблице 4 приведены данные молярной электрической проводимости синтезированных комплексов при разбавлении.

Таблица 4. Данные концентрационной зависимости молярной электрической проводимости растворов комплексов при 298 К

Nº ¤/¤		μ, Ом⁻¹•см²•моль⁻¹				
	Комплексные соединения	Концентрация комплекса, моль/л				
11/11		1,4.10-3	1,3.10-3	1,2.10-3	1,1.10-3	
1	$([Fe(TSC)_2SO_4])_2SO_4$	274	297	322	343	
2	$([Fe(TSC)_3])_2(SO_4)_3$	532	555	589	615	

Из данных, приведённых в таблице 4, видно, что с разбавлением для всех комплексных форм не зависимо от типа электролита, к которым они относятся, электрическая проводимость возрастает, и эта зависимость в координатах μ от \sqrt{C} линейна, что характерно для сильных электролитов.

Для определения параметров кристаллической решётки синтезированных комплексов были регистрированы их рентгенограммы на рентгеновском дифрактометре марки «Дрон-3». Рентгенограммы идентифицировали по методу Стипла-Липсона [18]. На рис. 6 и 7 приведены рентгенограммы комплексов состава ([Fe(TSC)₂(SO₄)])₂SO₄ и ([Fe(TSC)₃])₂(SO₄)₃. Для обоих комплексов характерным является наличие большого количества резких рефлексов, что говорит об их высокой кристалличности.

Рис. 6. Зависимость интенсивности линий от 2Ө для комплекса ([Fe(TSC)₂(SO₄)])₂SO₄

Рис. 7. Зависимость интенсивности линий от 2 θ для комплекса ([Fe(TSC)₃])₂(SO₄)₃

Рассчитанные из порошковых рентгенограмм методом Стипла-Липсона [18] межплоскостные расстояния и параметры элементарной ячейки комплексов приведены в таблицах 5, 6 и 7.

Гаолица 5.							
Nº	20	$sin^2 \Theta_{_{ m 9KCH}}$	hkl	$sin^2 \Theta_{reop}$			
1	9,732	0,007195	1:0:0	0,0064000			
2	10,24	0,007964	0:1:0	0,0079000			
3	11,044	0,009260	0:0:1	0,0092600			
4	12,308	0,011492	1:1:0	0,0143000			
5	14,856	0,016713	1:0:1	0,0156600			
6	15,112	0,017291	0:1:1	0,0171600			
7	17,406	0,022895	1:1:1	0,0235600			
8	18,436	0,025661	2:0:0	0,0256000			
9	21,254	0,034009	2:0:1	0,0348600			

Таблица 5. Идентификация рентгенограммы комплекса ([Fe(TSC)₂(SO₄)])₂SO₄

№	20	$sin^2 \Theta_{_{\mathfrak{SKCH}}}$	hkl	$sin^2 \Theta_{reop}$
10	23,534	0,041588	2:1:1	0,0427600
11	25,768	0,049719	1:1:2	0,0513400
12	26,307	0,051784	1:1:2	0,0513400
13	27,631	0,057024	2:2:0	0,0572000
14	28,623	0,061105	2:0:2	0,062640
15	32,942	0,080389	0:3:1	0,0803600
16	34,693	0,088893	1:0:3	0,0897400
17	35,432	0,092598	1:0:3	0,0897400
18	38,598	0,109229	0:3:2	0,1081400
19	40,328	0,118824	2:1:3	0,1168400
20	43,426	0,136869	3:3:1	0,1379600
21	43,929	0,139900	2:2:3	0,1405400
22	45,287	0,148222	3:1:3	0,1488400
23	49,576	0,175781	4:3:0	0,1735000
24	54,177	0,207358	4:3:2	0,2105400
25	55,669	0,218014	0:3:4	0,2192600
26	57,526	0,231542	2:4:3	0,2353400
27	59,329	0,244946	2:3:4	0,2448600

Таблица 6. Идентификация рентгенограммы комплекса ([Fe(TSC)₃])₂(SO₄)₃

Nº	20	$sin^2 \Theta_{_{ m SKC\Pi}}$	hkl	$sin^2 \Theta_{reop}$
1	10,225	0,007941	1:0:1	0,0080810
2	10,961	0,009122	0:1:1	0,0093420
3	11,382	0,009833	2:0:0	0,0109160
5	14,039	0,014935	0:2:0	0,0149060
6	14,516	0,015961	0:2:0	0,0159600
7	16,695	0,021076	0:2:1	0,0213120
8	16,827	0,021408	0:0:2	0,0214080
9	17,83	0,024015	1:0:2	0,0241370
10	18,335	0,025383	0:1:2	0,0253980
11	20,156	0,030621	3:0:1	0,0299130
12	21,648	0,035266	0:3:0	0,0359100
13	22,168	0,036959	2:1:2	0,0363140
14	22,928	0,039502	1:3:0	0,0386390
15	25,165	0,047457	2:3:0	0,0468260
16	26,979	0,054414	1:1:3	0,0548870
17	27,608	0,056931	0:3:2	0,0573180
18	29,589	0,065205	3:3:1	0,0658230
19	30,329	0,06843	2:3:2	0,0682340
20	32,392	0,077799	3:1:3	0,0767190
21	33,985	0,085408	1:3:3	0,0868070
22	35,671	0,093811	2:3:3	0,0949940
23	41,067	0,123029	1:5:2	0,1238870
24	45,386	0,148836	0:2:5	0,1497600
25	50,816	0,184094	0:5:4	0,1853820
26	57,658	0,232514	0:5:5	0,2335500
27	59,261	0,244436	2:5:5	0,2444660

Таблица 7. Структурные параметры кристаллических решеток комплексных соединений железа(III) с TSC и FTSC

Соединение	Лиганд	Параметры элементарной ячейки			ісло рук. 1ниц 1ейке	нго-	
		<i>a</i> , A	<i>b</i> , A	<i>c</i> , A	Чи ст] еди в яч	Си	
$([Fe(TSC)_3SO_4])_2SO_4$	TSC	9,64	8,67	8,01	2	Орторомбич.	
$([Fe(TSC)_3])_2(SO_4)_3$	TSC	14,76	12,20	10,54	2	Орторомбич.	

Из данных таблицы 7 видно, что комплексы железа(III) с TSC имеют орторомбическую сингонию с числом структурных единиц в ячейке равное двум.

Экспериментальная часть

В качестве исходных соединений использовали $Fe_2(SO_4)_3 \cdot 9H_2O$, $FeCl_3 \cdot 6H_2O$ и $Fe(NO_3)_3 \cdot 6H_2O$, которые были получены по методикам, описанным [19]. TSC-продажный имел марку «Т» и был перекристаллизован из водных растворов. В составе комплексов ионы Fe^{3+} и CI⁻ определяли гравиметрическим методом [20]. Водород, углерод, азот и серу определяли на CHNS-элементном анализаторе «Vario-Microcube», ионы SO_4^{2-} и NO_3^{-} определяли потенциометрическим методом с использованием сульфат- и нитрат-селективных электродов. Растворы H_2SO_4 , HCl и HNO₃ разных концентраций были приготовлены из фиксаналов.

Инфракрасные спектры комплексов в области 400-4000 см⁻¹ регистрировали на Фурье ИК-спектрометре IRAffinity-1 (SHIMADZU, Япония) в виде таблеток с КВг. Электропроводность растворов синтезированных комплексов измеряли в закрытой термостатированной ячейке на приборе «НІ 8733 Conductivitymeter». Рентгенограммы порошковых образцов снимали на рентгеновском дифрактометре «Дрон-3» с использованием методов «Просвет» и «Отражение». Процесс термолиза образующихся комплексов изучали на дериватографе «Q-1500» системы «Паулик-Паулик-Эрдей».

Синтез ([Fe(TSC)₂SO₄])₂SO₄. К 10 мл кислого раствора, содержащего 1,0 г Fe₂(SO₄)₃·9H₂O, при перемешивании на магнитной мешалке добавляли раствор, содержащий 0,32 г тиосемикарбазида. После шестичасового перемешивания на магнитной мешалке из раствора выпадает жёлтый осадок. Полученный комплекс был промыт в холодной воде и высушен в вакуум-эксикаторе над концентрированной серной кислотой. Полученное соединение плохо растворяется в воде и органических растворителях. Найдено, %: Fe –14,16; N – 22,64; H – 2,48; C – 6,19; S – 28,88. Для ([Fe(TSC)₂SO₄])₂SO₄ вычислено, %: Fe – 14,66; N – 22,00; H – 2,62; C – 6,28; S – 29,32.

Синтез ([Fe(TSC)₃])₂(SO₄)₃. К 10 мл кислого раствора, содержащего 1,0 г Fe₂(SO₄)₃·9H₂O, при перемешивании на магнитной мешалке добавляли раствор, содержащий 0,49г тиосемикарбазида. При этом в течение трех часов при перемешивании из раствора выпадает коричневато-белый осадок. Соединение промыто холодной водой и высушено в вакуум-эксикаторе над концентрированной серной кислотой. Полученный комплекс плохо растворяется в воде и органических растворителях. Найдено, %: Fe – 12,13; N – 26,14; H – 3,05; C – 8,06; S – 30,06. Для ([Fe(TSC)₃])₂(SO₄)₃ вычислено, %: Fe – 11,84; N – 26,64; H – 3,17; C – 7,61; S – 30,44.

Выводы

1. Разработаны оптимальные методики синтеза и выделены в твёрдом виде новые координационное соединение железа(III) с TSC. Методами элементного анализа, кондуктометрии, термогравиметрии, ИК-спектроскопии и рентгенографии доказана индивидуальность образующихся комплексов. Подтверждены данные потенциометрического титрования о ступенчатом характере комплексообразования железа(III) с TSC. Предложены наиболее вероятные реакции образования комплексов;

2. Методом кондуктометрии установлен тип электролита, к которому относятся синтезированные комплексы. Идентифицированы промежуточные и конечные продукты их термолиза. ИК-спектроскопически показано, что TSC координированы железом(III) бидентатно посредством атомов серы и азота.

Список источников

- 1. **Газиева Г.А., Кравченко А.Н.** Тиосемикарбазиды в синтезе пяти- и шестичленных гетероциклических соединений // *Успехи химии.* 2012. Т. 81, № 6. С. 494–523.
- 2. **Миронов А.Ю.**, **Леонов В.В.** Железо, вирулентность и межмикробные взаимодействия условнопатогенных микробов // Успехи современной биологии. 2016. Т. 136, № 3. С. 285–294.
- 3. Campbell M.J-M. Transition metal complexes of *thiosemicarbazideanc*, *thiosemicarbazones* // *Coordination Chemistry Reviews*. 1975. Vol. 15. P. 273–319. DOI: 10.1016/S0010-8545(00)80276-3.
- 4. Аминджанов А.А., Курбанов Н.М., Ахмедов К.У. Комплексные соединения рения(V) стиосемикарбазидом // Журн. неорган. химии. 1990. Т. 34, вып. 10. С. 2557–2563.
- 5. Сафармамадов С.М. Комплексные соединения рения(V) с 4-метилтиосемикарбазидом, 4-метил-1,2,4триазолтиол и их производными: автореф. дис. ... канд. хим. наук. Душанбе, 1994. 13 с.
- 6. Рахимова М., Файзуллозода Э.Ф., Давлатшоева Дж.А., Эшова Г.Б. Влияние концентрационных параметров раствора гомогенной системы Fe(II)–Fe(III)–глицин– Na(H)ClO₄–H₂O на состав образующихся комплексов // От химии к технологии шаг за шагом. 2022. Т. 4, вып. 1. С. 15–21. DOI: 10.52957/27821900_2023_01_25. URL: https://chemintech.ru/ru/nauka/issue/5032/view
- Buvrayev E., Kadirova Sh., Tillayev S., Abilkasimova G., Tursunova N. Synthesis and investigation of mixed bioligand complexes with melamin and glycine // Universum: химия и биология: электрон. научн. журнал. 2021. Vol. 10, no. 88. DOI: 10.32743/UniChem.2021.88.10.12332. URL: https://7universum.com/ru/nature /archive/item/12332
- 8. Попов Л.Д., Распопова Е.А., Бородкин С.А., Туполова Ю.П., Левченков С.И., Щербаков И.Н. Синтез и физико-химическое исследование фталазинилгидразона 2-аминопиридин-3-карбальдегида и комплексов металлов на его основе // Журнал общей химии. 2020. Т. 90, № 3. С. 432–440, DOI: 10.31857/S0044460X20030138.
- Lee H.F., Yang C.-T., Fan D., Vittal J.J., John D. Ranford Synthesis, characterization and physicochemical properties of copper(II) complexes containing salicylaldehydesemicarbazone // Polyhedron. 2003. Vol. 22, no. 20. P. 2781–2786. DOI: 10.1016/S0277-5387(03)00402-9.
- 10. Сафармамадзода С.М., Курбонбеков Д.С., Мубораккадамов Д.А. Влияние температуры на устойчивость 2-этилимидазольных комплексов Au (III) // *От химии к технологии шаг за шагом*. 2022. Т. 3, вып. 3. С. 58–64. DOI: 10.52957/27821900_2022_03_58. URL: https://chemintech.ru/ru/nauka/issue/5031/view
- 11. Сафармамадов С.М., Мубораккадамов Д.А., Мабаткадамзода К.С. Синтез и физико-химические исследования комплексных соединений золота (3) с триазолами // Вестник Таджикского национального университета. Серия естественных наук. 2020. № 1. С. 154–167.
- 12. Mashima M. The Infrared Absorption Spectra of (NH₂CONH-)2, NH₂CONHNH₂, (NH₂CSNH-)2 and NH₂CSNHNH₂ // Bulletin of the Chemical Society of Japan in 1964. 1964. Vol. 37, no. 7.

- 13. Wiles A., Suprunchuk *T*. The infrared absorption spectra of thiosemicarbazide and related compounds: NH and NH vibrations // *Canadian Journal of Chemistry*. 1969. Vol. 47. 1087. DOI: 10.1139/V69-173.
 - 14. Lane M.D. Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals // American Mineralogist. 2007. Vol. 92. P. 1–18. DOI:10.2138/AM.2007.2170.
 - 15. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
 - 16. Кукушкин Ю.Н. Химия координационных соединений. М.: Высшая школа, 1985. 559 с.
 - 17. Горбачева С.В. Практикум по физической химии. М.: Высшая школа, 1974. 496 с.
 - 18. Липсон Г., Стиюл Г.М. Интерпретация порошковых рентгенограмм. М.: Мир, 1972. 384 с.
 - 19. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Мир, 1974. 209 с.
- 20. Норова М.Т., Шодиева С.Ф., Хамзаева Г.Ч., Рачинская Г.Ф., Вахобова Р.У. Гравиметрия и ватитриметрия. Душанбе: Тадж. нац. ун-т, 2015. 107 с.

Поступила в редакцию 05.04.2024 Одобрена после рецензирования 16.05.2024 Принята к опубликованию 02.07.2024